Advertisement

The Role of Mixotrophy in Pelagic Environments

  • Bo Riemann
  • Harry Havskum
  • Frede Thingstad
  • Catherine Bernard
Part of the NATO ASI Series book series (volume 38)

Abstract

This paper reviews the occurrence and ecological importance of mixotrophic flagellates and ciliates in pelagic environments, particularly in marine ecosystems. Mixotrophy is here defined as the combination of photoautotrophic and heterotrophic nutrition in a single individual, often used in the restricted sense of combining photosynthesis and phagotrophy. Mixotrophic protists represent an alternative strategy that allows a shortcut between the traditional food web and the microbial loop. A large number of reports have been published on the ecological importance of mixotrophic flagellates in freshwater, yet only a few studies have been carried out in seawater. In contrast, most of the knowledge of mixotrophic ciliates comes from marine environments. Results from field studies have demonstrated that both mixotrophic flagellates and ciliates are commonly found in many marine environments, and mixotrophic flagellates can dominate the biomass of photoautotrophs and be responsible for the entire grazing of bacteria or protists. Results from laboratory experiments on factors controlling the degree of photoautotrophy/phagotrophy in flagellates are presented. Finally, we present a hypothesis for a growth strategy of bacterivorous mixotrophic flagellates.

Keywords

Heterotrophic Flagellate Food Vacuole Planktonic Ciliate Ceratium Hirundinella Mixotrophic Dinoflagellate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson A, Falk S, Samuelsson G, Hagström, Å (1989) Nutritional Characteristics of a Mixotrophic Nanoflagellate, Ochromonas sp. Microb Ecol 17: 251–262CrossRefGoogle Scholar
  2. Auf dem Venne H (1990) Distribution of auto-, mixo-, and heterotrophic planktonic ciliates in the Greenland Sea in late spring and fall 1988. Comm Meet Int Cou Explor Sea C.M.-ICES/L:10 Google Scholar
  3. Azam F, Fenchel T, Field J, Gray JS, Meyer-Reil LA and Thingstad F (1983) The ecological role of water column microbes in the sea. Mar Ecol Prog Ser 10: 257–263CrossRefGoogle Scholar
  4. Azam F and Fuhrmann JA (1984) Measurements of bacterioplankton growth in the sea and its regulation by environmental conditions:. In: Heterotrophic activity in the sea. Hobbie JE and Williams PJLeB (eds). Plenum Press New York 179–1196Google Scholar
  5. Bennett SJ, Sanders RW, Porter KG (1990) Heterotrophic, autotrophic and mixotrophic nanoflagellates: seasonal abundances and bacterivory in a eutrophic lake. Limnol Oceanogr 35: 1821–1832CrossRefGoogle Scholar
  6. Bernard C and Rassoulzadegan F (1994) Bacteria or microflagellates as a major food source for marine ciliates: possible implications for the microzooplankton. Mar Ecol Prog Ser 64: 147–155CrossRefGoogle Scholar
  7. Berninger U-G, Caron DA, Sanders RW (1992) Mixotrophic algae in three ice-covered lakes of the Pocono Mountains, U.S.A. Freshwater Biol 28: 263–272CrossRefGoogle Scholar
  8. Biecheler B (1936) Observation de la capture et la digestion des proies chez un péridinien vert. Comptes rendus des séances de la Société de Biologie 122: 1173–1175Google Scholar
  9. Biecheler B (1952) Recherches sur les Péridiniens. Bull Biol Fr Belg 36 (suppl.): 1–149Google Scholar
  10. Bird DF and Kalff J (1986) Bacterial Grazing by Planktonic Lake Algae. Science 231: 493–495PubMedCrossRefGoogle Scholar
  11. Bird DJ and Kalff J (1987) Algal phagotrophy: Regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol Oceanogr 32: 277–284CrossRefGoogle Scholar
  12. Bird DF and Kalff J (1989) Phagotrophic sustenance of a metalimnetic phytoplankton peak. Limnol Oceanogr 34: 155–162CrossRefGoogle Scholar
  13. Blackbourn DJ, Taylor FJR, Blackbourn J (1973) Foreign organelle retention by ciliates. J Protozool 20: 286–288Google Scholar
  14. Bockstahler KR and Coats DW (1993a) Spatial and Temporal Aspects of Mixotrophy in Chesapeake Bay Dinoflagellates. J Euk Microbiol 40(1): 49–60CrossRefGoogle Scholar
  15. Bockstahler KR and Coats DW (1993b) Grazing of the mixotrophic dinoflagellate Gymnodinium sanguineum on ciliate populations of Chesapeake Bay. Mar Biol 116: 477–487CrossRefGoogle Scholar
  16. Bratbak G, Heldal M, Thingstad TF, Riemann B, Haslund, OH (1992) Incorporation of viruses into the budget of microbial C-transfer. A first approach. Mar Ecol Prog Ser 83: 273–280CrossRefGoogle Scholar
  17. Cachon M, Cachon J, Cosson J, Greuet C, Huitorel P (1991) Dinoflagellate flagella adopt various conformations in response to different needs. Biol Cell 71: 175–182CrossRefGoogle Scholar
  18. Caron AC, Porter KG, Sanders RW (1990) Carbon, nitrogen, and phosphorus budgets for the mixotrophic phytoflagellate Poterioochromonas malhamensis (Chrysophyceae) during bacterial ingestion. Limnol Oceanogr 35(2): 433–443CrossRefGoogle Scholar
  19. Caron AC, Sanders RW, Lim EL, Marrasé C, Amaral LA, Whitney S, Aoki RB, Porter KG (1993) Light-Dependent Phagotrophy in the Freshwater Mixotrophic Chrysophyte Dinobryon cylindricum. Microb Ecol 25: 93–111Google Scholar
  20. Currie DJ and Kalff J (1984) The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in seawater. Limnol Oceanogr 29: 311–321CrossRefGoogle Scholar
  21. Davies PG and Sieburth JMcN (1984) Estuarine and oceanic microflagellate predation of actively growing bacteria: Estimation by frequency of dividing-divided bacteria. Mar Ecol Prog Ser 19:237–246CrossRefGoogle Scholar
  22. Dale T (1987) Diel vertical distribution of planktonic ciliates in Lindaspollene, western Norway. Mar Microb Food Webs 2: 15–28Google Scholar
  23. Dodge JD and Crawford RM (1970) The morphology and fine structure of Ceratium hirundinella (Dinophyceae). J Phycol 6: 137–149Google Scholar
  24. Dolan JR (1992) Mixotrophy in ciliates: a review of Chlorella symbiosis and chloroplast retention. Mar Microb Food Webs 6: 115–132Google Scholar
  25. Droop MR (1963) Algae and invertebrates in symbiosis. Symp Soc Gen Microbiol 13: 171–199Google Scholar
  26. Estep KW, Davis PG, Keller MD, Sieburth JMcN (1986) How important are algal nanoflagellates in bacterivory? Limnol Oceanogr 31: 646–50CrossRefGoogle Scholar
  27. Fenchel T (1988) Marine plankton food chains. Ann Rev Ecol Syst 19: 19–38CrossRefGoogle Scholar
  28. Fenchel T (1991) Flagellate design and function. In: The Biology of Free-living Heterotrophic Flagellates. Patterson DJ and Larsen J:(eds) Syst Ass 45. Clarendon Press. Oxford 7–19Google Scholar
  29. Fenchel T and Bernard C (1993) Endosymbiotic purple nonsulphur bacteria in an anaerobic ciliated protozoan. FEMS Microbiol Lett 110: 21–25CrossRefGoogle Scholar
  30. Finlay BJ, Berninger U-G, Stewart LJ, Hindle RM, Davison W (1987) Some factors controlling the distribution of two pond-dwelling ciliates with algal symbionts (Frontonia vernalis and Euplotes daidaleos). J Protozool 34: 349–356Google Scholar
  31. Finlay BJ and Fenchel T (1989) Everlasting picnic for protozoa. New Scientist. 1671: 66–69Google Scholar
  32. Finlay BJ, Clarke KJ, Cowling AJ, Hindle RM, Rogerson A, Berninger U-G (1988) On the abundance and distribution of protozoa and their food in a productive freshwater pond. Europ J Protistol 23: 205–217CrossRefGoogle Scholar
  33. Gourret P (1883) Sur les Péridiniens du golfe de Marseille. Annales du musée d’histoire naturelle de Marseille. Zoologie. T. 1Google Scholar
  34. Green JC (1991) Phagotrophy in prymnesiophyte flagellates. In: The Biology of Free- living Heterotrophic Flagellates. Patterson, DJ and Larsen, (eds) J: Syst Ass 45. Clarendon Press. Oxford 21–38Google Scholar
  35. Haas LW (1982) Improved epifluorescence microscopy for observing planktonic microorganisms. Ann Inst Oceanogr, Paris 58: 261–266Google Scholar
  36. Hall JA, Barett DP, James MR (1993) The importance of phytoflagellate, heterotrophic flagellate and ciliate grazing on bacteria and picophytoplankton sized prey in a coastal marine environment. J Plankt Res 15(9): 1075–1086CrossRefGoogle Scholar
  37. Hällfors G and Niemi Ä (1974) A Chrysochromulina (Haptophyceae) bloom under the ice in the Tvärminne archipelago, southern coast of Finland. Memoranda Societatis pr Fauna et Flora fennica 50: 89–10Google Scholar
  38. Hansen PJ (1991) Dinophysis — a planktonic dinoflagellate genus which can act both as a prey and a predator of a ciliate. Mar Ecol Prog Ser 69: 201–204CrossRefGoogle Scholar
  39. Havskum H and Riemann B (unpubl.) The ecological importance of mixotrophic flagellates in the Bay of Aarhus, Denmark.Google Scholar
  40. Hobbie JE and Williams PJLeB (1984): Heterotrophic activity in the sea. Plenum Press. New YorkGoogle Scholar
  41. Hofeneder H (1930) Über de animalische Ernährung von Ceratium hirundinella O.F. Müller und über die Rolle des Kernes bei dieser Zellfunktion. Arch Protistenkunde 71: 1–32Google Scholar
  42. Ishida Y and Kimura B (1986) Photosynthetic phagotrophy of Chrysophyceae: evolutionary aspects. Microbiological Sciences 3(5): 132–135PubMedGoogle Scholar
  43. Jacobson D and Anderson D (1986) Thecate heterotrophic dinoflagellates: feeding behavior and mechanisms. J Phycol 22: 249–258CrossRefGoogle Scholar
  44. Jones HLJ, Leadbeater BSC, Green, JC (1993) Mixotrophy in marine species of Chrysochromulina (Prymnesiophyceae): Ingestion and digestion of a small green flagellate. J Mar Biol Ass UK 73: 283–296CrossRefGoogle Scholar
  45. Jonsson PR (1987) Photosynthetic assimilation of inorganic carbon in marine oligotrich ciliates (Ciliophora, Oligotrichina). Mar Microb Food Webs 2: 55–68Google Scholar
  46. Jumars P, Penry DL, Baross JA, Perry MJ, Frost BW (1989) Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals. Deep-Sea Res. 36: 483–495CrossRefGoogle Scholar
  47. Kawachi M, Inouye I, Maeda O, Chihara M (1991) The haptonema as a food-capturing device: observations on Chrysochromulina hirta (Prymnesiophyceae). Phycologia 30(6): 563–573CrossRefGoogle Scholar
  48. Kawakami H (1991) An endosymbiotic Chlorella-bearing ciliate: Platyophora chlorelligera Kawakami 1989. Eur J Protistol 26: 245–255CrossRefGoogle Scholar
  49. Kugrens P and Lee RE (1990) Ultrastructural Evidence for Bacterial Incorporation and Myxotrophy in the Photosynthetic Cryptomonad Chroomonas pochmanni Huber-Pestalozzi (Cryptomonadida). J Protozool 37(4): 263–267Google Scholar
  50. Larsen J (1988) An ultrastructural study of Amphidiniumpoecilochroum (Dinophyceae), a phagotrophic dinoflagellate feeding on small species of cryptophytes. Phycologia 27: 366–377.CrossRefGoogle Scholar
  51. Laval-Peuto M (1975) Cortex, perilemme et reticulum vésiculeux de Cyttarocylis brandti (Cilié Tintinnide). Les cilies ê périlemme. Protistologica 11: 83–98Google Scholar
  52. Laval-Peuto M (1991) Symbiose plastidiale et Mixotrophie des Ciliés planctoniques marins oligotrichina (Ciliophora). Thèse Doctorat Etat, Université Nice-Sophia Antipolis. Fasc. 1: mémoire, 176 p. Fasc. 2: 13 articles, 191 p.Google Scholar
  53. Laval-Peuto, M (1992) Plastidic protozoa. In:Algae and symbioses. Reisser, W (ed.) Biopress Ltd, Bristol, 471–499Google Scholar
  54. Laval-Peuto M and Febvre M (1986) On plastid symbiosis in Tontonia appendiculariformis (Ciliophora, Oligotrichina). Bio Systems 19: 137–158PubMedCrossRefGoogle Scholar
  55. Laval-Peuto M and Rassoulzadegan F (1988) Autofluorescence of marine planktonic Oligotrichina and other ciliates. Hydrobiologia 159: 99–110CrossRefGoogle Scholar
  56. Laval-Peuto M and Salvano P (1991) Cytochemistry of polysaccharides stored by ciliates in symbiosis with plastids (Ciliophora, Oligotrichina). Symbiosis (submitted)Google Scholar
  57. Laval-Peuto M, Salvano P, Gayol P, Greuet C (1986) Mixotrophy in marine planktonic ciliates: ultrastructural study of Tontonia appendiculariformis (Ciliophora, Oligotrichina). Mar Microb Food Webs 1: 81–104Google Scholar
  58. Lindeman RL (1942) The trophic dynamic aspect of ecology. Ecology 23: 399–418CrossRefGoogle Scholar
  59. Lindholm T (1985) Mesodinium rubrum — a unique photosynthetic ciliate. Adv Aqua Microb 3: 1–48Google Scholar
  60. Lindholm T, Lindroos P, Murk A-C (1988) Ultrastructure of the photosynthetic ciliate Mesodinium rubrum. BioSystems 21: 141–149PubMedCrossRefGoogle Scholar
  61. Lindholm T and Murk, A-C (1989) Symbiotic algae and plastids in planktonic ciliates Memoranda Soc Fauna Flora Fennica 65: 17–22Google Scholar
  62. Lopez E (1979) Algal chloroplasts in the protoplasm of three species of benthic foraminifera: taxonomic affinity, viability and persistence. Mar Biol 53: 201–211CrossRefGoogle Scholar
  63. McManus GB and Fuhrmann JA (1986a) Bacterivory in seawater studied with the use of inert fluorescent particles. Limnol Oceanogr 31: 420–426CrossRefGoogle Scholar
  64. McManus GB and Fuhrmann JA (1986b) Photosynthetic pigments in the ciliate Laboea strobila from Long Island Sound, USA. J Plankt Res 8: 317–327CrossRefGoogle Scholar
  65. Moestrup, Ø and Andersen, RA (1991) Organization of heterotrophic heterokonts. In The Biology of Free-living Heterotrophic Flagellates. Patterson DJ and Larser J (eds): Syst Ass 45. Clarendon Press. Oxford: 333–360Google Scholar
  66. Nielsen TG and Kiørboe T (1994) Regulation of Zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates. Limnol Oceanogr 39: 508–519CrossRefGoogle Scholar
  67. Nyggard K and Tobiesen A (1993) Bacterivory in algae: A survival strategy during nutrient limitation. Limnol Oceanogr 38(2): 273–279CrossRefGoogle Scholar
  68. Olrik K and Nauwerck A (1993) Stress and disturbance in the phytoplanktor community of a shallow, hypertrophic lake. Hydrobiologia 249: 15–24CrossRefGoogle Scholar
  69. Parke M, Manton I, Clarke B (1956) Studies on marine flagellates. III. Three furthei species of Chrysochromulina. J Mar Biol Ass UK 35: 387–414CrossRefGoogle Scholar
  70. Pascher A (1917) Flagellaten und Rhizopoden in ihren gegenseitigen Beziehungen Archiv für Protistenkunde 38: 1–87Google Scholar
  71. Patterson DJ and Dürrschmidt M (1987) Selective retention of chloroplasts by algivorous heliozoa: Fortuitous chloroplast symbiosis? Eur op J Protistol 23: 51–55CrossRefGoogle Scholar
  72. Pengerud B, Skjoldal EF, Thingstad TF (1987) The reciprocal interaction betweer degradation of glucose and ecosystem structure. Studies in mixed chemostat cultures of marine bacteria, algae, and bacterivorous nanoflagellates. Mar Ecol Prog Ser 35:111–117CrossRefGoogle Scholar
  73. Porter KG (1988) Phagotrophic phytoflagellates in microbial food webs Hydrobiologia 159: 89–97CrossRefGoogle Scholar
  74. Pringsheim EG (1952) On the nutrition of Ochromonas. Quart J Microscopical Soc 93 (1): 71–96Google Scholar
  75. Provasoli L (1977) Cultivation of animals. In: Marine Ecology, Vol. 3 Kinne, O (ed) Wiley, New York 1295–1320.Google Scholar
  76. Putt M (1990a) Metabolism of photosynthate in the chloroplast-retaining ciliate Laboea strobila. Mar Ecol Prog Ser 60: 271–282CrossRefGoogle Scholar
  77. Putt M (1990b) Abundance, chlorophyll content and photosynthetic rates of ciliates ir the Nordic Seas during summer. Deep Sea Res 37: 1713–1731CrossRefGoogle Scholar
  78. Rassoulzadegan F, Laval-Peuto M, Sheldon RW (1988) Partitioning of the food ratior of marine ciliates between pico- and nanoplankton. Hydrobiologia 159: 75–88CrossRefGoogle Scholar
  79. Reisser W (1986) Endosymbiontic associations of freshwater protozoa and algae. In Progress in Protistology. Corliss JO and Patterson DJ (eds) Biopress Ltd Bristol 195–214Google Scholar
  80. Riemann, B and Sondergaard, M (1986) Regulation of bacterial secondary productior in two eutrophic lakes and in experimental enclosures. J Plankt Res 8: 519–536CrossRefGoogle Scholar
  81. Rogerson A, Finlay BJ, Berninger U-G (1989) Sequestered chloroplasts in the freshwater ciliate Strombidium viride (Ciliophora: Oligotrichida). Trans Amer Micr Soc 108: 117–126CrossRefGoogle Scholar
  82. Rublee PA and Gallegos CL (1989) Use of fluorescently labelled algae (FLA) to estimate microzooplankton grazing. Mar Ecol Prog Ser 51: 221–227CrossRefGoogle Scholar
  83. Salonen K and Jokinen S (1988) Flagellate grazing on bacteria in a small dystrophic lake. Hydrobiologia 161: 203–209CrossRefGoogle Scholar
  84. Sanders RW (1991a) Trophic strategies among heterotrophic flagellates. In:The Biology of Free-living Heterotrophic Flagellates Patterson DJ and Larsen J (eds). Syst Ass. 45 Clarendon Press Oxford: 21–38Google Scholar
  85. Sanders RW (1991b) Mixotrophic protists in marine and freshwater ecosystems. J Protozool 38: 76–81Google Scholar
  86. Sanders RW, Porter KG, Bennett SJ, De Biase AE (1989) Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol Oceanogr 34: 673–687CrossRefGoogle Scholar
  87. Sanders RW, Porter KG, Caron DA (1990) Relationship Between Phototrophy and Phagotrophy in the Mixotrophic Chrysophyte Poterioochromonas malhamensis. Micro Ecol 19: 97–109CrossRefGoogle Scholar
  88. Schnepf E, Deichgräber G, Drebes G (1985) Food uptake and the fine structure of the dinophyte Paulsenella sp., an ectoparasite of marine diatoms. Protoplasma 124: 188–204CrossRefGoogle Scholar
  89. Schnepf E, Winter S, Mollenhauer D (1989) Gymnodinium aeruginosum (Dinophyta): a blue-green dinoflagellate with a vestigial, anucleate, cryptophycean endosymbiont. Pl Syst Evol 164: 75–91CrossRefGoogle Scholar
  90. Smetacek VS (1981) The annual cycle of protozooplankton in the Kiel Bight. Mar Biol 63: 1–11CrossRefGoogle Scholar
  91. Spero HJ (1982) Phagotrophy in Gymnodinium fungiforme (Pyrrhophyta): the pedunkel as an organelle of ingestion. J Phycol 18: 356–360CrossRefGoogle Scholar
  92. Stoecker DK (1991) Mixotrophy in marine planktonic ciliates: physiological and ecological aspects of plastid retention by oligotrichs. In: Protozoa and their role in marine processes Reid PC, Turley CM, Burkill PH (eds), G25. NATO ASI Series, Springer-Verlag, Berlin, Heidelberg 161–179CrossRefGoogle Scholar
  93. Stoecker DK, Buck KR, Putt M (1992) Changes in the sea-ice brine community during the spring-summer transition, McMurdo Sound, Antarctica. I. Photosynthetic protists. Mar Ecol Prog Ser 84: 265–278CrossRefGoogle Scholar
  94. Stoecker, DK and Michaels, AE (1991) Respiration, photosynthesis and carbon metabolism in planktonic ciliates. Mar Biol 108: 441–447CrossRefGoogle Scholar
  95. Stoecker DK, Michaels AE, Davis LH (1987) Large proportion of marine planktonic ciliates found to contain functional chloroplasts. Nature 326: 790–792CrossRefGoogle Scholar
  96. Stoecker DK and Silver MW (1987) Chloroplast retention by marine planktonic ciliates. In: Endocytobiology III, Vol 503 Lee, JJ and Fredericks, J (eds), Ann New York Acad Sci 562–565Google Scholar
  97. Stoecker DK, Silver MW, Michaels AE, Davis LH (1988/1989) Enslavement of algal chloroplasts by four Strombidium spp. (Ciliophora, Oligotrichida). Mar Microb Food Webs 3: 79–100Google Scholar
  98. Stoecker DK, Taniguchi A, Michaels AE (1989) Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters. Mar Ecol Prog Ser 50: 241–254CrossRefGoogle Scholar
  99. Suttle CA, Fuhrman JA, Capone DG (1990) Rapid ammonium cycling and concentration-dependent partitioning of ammonium and phosphate: Implications for carbon transfer in planktonic communities. Limnol Oceanogr 35:424–433CrossRefGoogle Scholar
  100. Swale EMF (1969) A study of the nanoplankton flagellate Pedinella hexacostata Vysotskii by light and electron microscopy. Br Phycol J 4: 65–86CrossRefGoogle Scholar
  101. Taylor FJR (1982) Symbioses in marine microplankton. Ann. Inst Oceanogr., Paris 58: 6190Google Scholar
  102. Thingstad TF and Pengerud B (1985) Fate and effect of allochthonous organic material in aquatic microbial ecosystems. An analysis based on chemostat theory. Mar Ecol Prog Ser 21:47–62CrossRefGoogle Scholar
  103. Thingstad TF, Skjoldal EF, Bohne, RA (1993) Phosphorus cycling and algal-bacterial competition in Sandsfjord, western Norway. Mar Ecol Prog Ser 99:239–259CrossRefGoogle Scholar
  104. Tranvik LJ, Porter KG, Sieburth, JMcN (1989) Occurrence of bacterivory in Cryptomonas, a common freshwater phytoplankter. Oecologia 78: 473–476CrossRefGoogle Scholar
  105. Verity PG and Vernet M (1992): Microzooplankton grazing, pigments and composition of plankton communities during late spring in two Norwegians fjords. Sarsia 77: 263–274Google Scholar
  106. Wawrik F (1970) Mixotrophie bei Cryptomonas borealis Skuja. Arch Protistenk 112: 312–313Google Scholar
  107. Weis DS (1982) Protozoal Symbionts. In: Experimental Microbial Ecology Burns RG and Slater JH, (eds). pp. 320–341, BlackwellGoogle Scholar
  108. Wehr JD, Brown LM, O’Grady K (1985) Physiological ecology of the bloom-forming alga Chrysochromulina breviturrita (Prymnesiophyceae) from lakes influenced by acid precipitation. Can J Bot 63: 2231–2239CrossRefGoogle Scholar
  109. Wetherbee R and Andersen RA (1992) Flagella of a chrysophycean alga play an active role in prey capture and selection. Direct observations on Epipyxis pulchra using image enhanced video microscopy. Protoplasma 166: 1–7CrossRefGoogle Scholar
  110. Wilcox LW and Wedemeyer GJ (1991) Phagotrophy in the Freshwater, Photosynthetic Dinoflagellate Amphidinium cryophilum. J Phycol 27: 600–609CrossRefGoogle Scholar
  111. Wilson EO and Bossert WH (1971) A primer of population biology. Sinauer Associates Inc. Publishers. Stamford ConnecticutGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Bo Riemann
    • 1
  • Harry Havskum
    • 1
  • Frede Thingstad
    • 2
  • Catherine Bernard
    • 3
  1. 1.The International Agency for 14Carbon DeterminationVKIHørsholmDenmark
  2. 2.Dept. of MicrobiologyUniversity of BergenBergenNorway
  3. 3.Marine Biological LaboratoryUniversity of CopenhagenHelsingørDenmark

Personalised recommendations