Skip to main content

Nitrogen Fixation in the Sea: Why Only Trichodesmium?

  • Conference paper
Molecular Ecology of Aquatic Microbes

Part of the book series: NATO ASI Series ((ASIG,volume 38))

Abstract

The relative importance of different nutrients in limiting primary production in the sea continues to be the subject of debate, but it is clear that several nutrients are often in short supply in many regions of the oceans. Nitrogen fixation capabilities should provide an ecological advantage to microorganisms in the oceanic environment, regardless of the primary nutrient limiting productivity. Trichodesmium is a filamentous nonheterocystous nitrogen-fixing cyanobacterium which is a conspicuous component of tropical and subtropical oceans, and appears to play a major role in carbon and nitrogen-fixation in regions where it is found. It is not intuitively obvious which characteristics of Trichodesmium confer an ecological advantage such that it is the predominant organism to exploit nitrogen fixation as a mechanism to obtain nitrogen in nitrogen-deficient oligotrophic oceans. Furthermore, there still remains the question of whether Trichodesmium is truly one of only a few species to fix nitrogen, or whether other nitrogen fixing organisms exist in the open ocean, but have yet to be cultivated. Molecular approaches have provided a way to examine both of these issues: what is the distribution of nitrogen fixing microorganisms in the marine environment, and what are the molecular and biochemical features that determine the ecological success of Trichodesmium in the open ocean environment?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alldredge AL and Silver MW (1988) Characteristics, dynamics, and significance of marine snow. Prog Oceanogr 20: 41–82

    Article  Google Scholar 

  • Arber W and Linn S (1969) DNA modification and restriction. Annu Rev Biochem 38: 467–500

    Article  PubMed  CAS  Google Scholar 

  • Ben-Porath J and Zehr JP (1994) Detection and characterization of cyanobacterial nifH genes. Appl Environ Microbiol 60, 880–887

    PubMed  CAS  Google Scholar 

  • Ben-Porath Carpenter EJ, Zehr ZP (1993) Genotypic relationships in Trichodesmium (cyanophyceae) based on nifH sequence comparisons. J Phycol 29: 806–810

    Article  Google Scholar 

  • Bergman B and Carpenter EJ (1991) Nitrogenase confined to randomly distributed trichomes in the marine cyanobacterium Trichodesmium thiebautii. J Phycol 27: 158–165

    Article  CAS  Google Scholar 

  • Bergman B, Siddiqui PJA, Carpenter EJ and Peschek GA (1993) Cytochrome oxidase: subcellular distribution and relationship to nitrogenase expression in the nonheterocystous marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 59: 3239–3244

    PubMed  CAS  Google Scholar 

  • Britschgi TB and Giovannoni SJ (1991) Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl Environ Microbiol 57: 1707–1713

    PubMed  CAS  Google Scholar 

  • Bryceson I and Fay P (1981) Nitrogen fixation in Oscillatoria (Trichodesmium) erythraea in relation to bundle formation and trichome differentiation. Mar Biol 61: 159–166

    Article  Google Scholar 

  • Capone DG, Ferner MD, Carpenter EJ (1995). Amino acid cycling in colonies of the planktonic marine cyanobacterium, Trichodesmium thiebautii. Submitted.

    Google Scholar 

  • Capone DG (1988) Benthic nitrogen fixation. In Nitrogen Cycling in Coastal Marine Environments TH Blackburn and J Sørensen (eds) John Wiley & Sons Ltd 85–123

    Google Scholar 

  • Capone DC (1983) Benthic nitrogen fixation. In Nitrogen in the Marine Environment Carpenter EJ and Capone DG (eds) Academic Press, Inc., New York 105–138

    Google Scholar 

  • Capone DG, O’Neil JM, Zehr J, Carpenter EJ (1990) Basis for diel variation in nitrogenase activity in the marine planktonic cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 56: 3532–3536

    PubMed  CAS  Google Scholar 

  • Carpenter EJ (1983a) Physiology and ecology of marine planktonic Oscillatoria (Trichodesmium). Mar Biol Lett 4: 69–85

    CAS  Google Scholar 

  • Carpenter EJ (1983b) Nitrogen fixation by marine Oscillatoria (Trichodesmium) in the world’s oceans. In Nitrogen in the Marine Environment Carpenter EJ and Capone DG (eds) Academic Press, Inc., New York 65–104

    Google Scholar 

  • Carpenter EJ (1972) Nitrogen fixation by a blue-green epiphyte on pelagic Sargassum. Science 178: 1207–1208

    Article  PubMed  CAS  Google Scholar 

  • Carpenter EJ and Price CC (1976) Marine Oscillatoria (Trichodesmium): Explanation for aerobic nitrogen fixation without heterocysts. Science 191: 1278–1280

    Article  PubMed  CAS  Google Scholar 

  • Carpenter EJ and Romans K (1991) Major role of the cyanobacterium Trichodesmium in nutrient cycling in the North Atlantic Ocean. Science 254: 1356–1358

    Article  PubMed  CAS  Google Scholar 

  • Carpenter EJ, Scranton MI, Novelli PC, Michaels A (1987) Validity of N2 fixation rate measurements in marine Oscillatoria (Trichodesmium). J Plankton Res 9: 1047–1056

    Article  Google Scholar 

  • Carpenter EJ, Bergman B, Dawson R, Siddiqui PJA, Söderbäck E, Capone DG (1992) Glutamine synthetase and nitrogen cycling in colonies of the marine diazotrophic cyanobacteria Trichodesmium spp. Appl Environ Microbiol 58: 3122–3129

    PubMed  CAS  Google Scholar 

  • Carpenter EJ, O’Neil JM, Dawson R, Capone DG, Siddiqui PJA, Roenneberg T, Bergman B (1993) The tropical diazotrophic phytoplankter Trichodesmium: biological characteristics of two common species. Mar Ecol Prog Ser 95: 295–304.

    Article  Google Scholar 

  • Carpenter EJ, Chang J, Cottrell M, Schubauer J, Paerl HW, Bebout BM, Capone DG (1990) Re-evaluation of nitrogenase oxygen-protective mechanisms in the planktonic marine cyanobacterium Trichodesmium. Mar Ecol Prog Ser 65: 151–158

    Article  CAS  Google Scholar 

  • Castenholz RW (1989) Subsection III. Order Oscillatoriales; subsection IV. Order Nostocales; subsection V. Order Stigonematales. In Bergey’s Manual of Systematic Bacteriology pp 1771–1791, 1794–99. Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Cullen J, Yang X, Maclntyre HL (1991) Nutrient limitation and marine photosynthesis. In Primary Productivity and Biogeochemical Cycles in the Sea Falkowski PG and Woodhead AD (eds.) Plenum Press, New York 69–68

    Google Scholar 

  • DeLong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38: 924–934

    Article  Google Scholar 

  • Du C and Gallon JR (1993) Modification of the Fe protein of the nitrogenase of Gloeothece (Nägeli) sp. ATCC 27152 during growth under alternating light and darkness. New Phytol 125: 121–129

    Article  CAS  Google Scholar 

  • Duerr EO (1981) Aerobic nitrogen fixation by two unicellular marine cyanobacteria (Synechococcus spp.). Ph.D. Thesis, University of Miami, FL.

    Google Scholar 

  • Dugdale RC and Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceangr 12: 196–206

    Article  CAS  Google Scholar 

  • Dugdale RC, Goering JJ, Ryther JH (1964) High nitrogen fixation rates in the Sargasso Sea and the Arabian Sea. Limnol Oceanogr 9: 507–510

    Article  CAS  Google Scholar 

  • Durner J, Böhm I, Hilz H, Böger P (1994) Posttranslational modification of nitrogenase: differences between the purple bacterium Rhodospirillum rubrum and the cyanobacterium Anabaena variabilis. Eur J Biochem 220: 125–130

    Article  PubMed  CAS  Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Revs 56: 340–373

    CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP-Phylogeny Inference Package (Version 3.5c). Distributed by the author. Department of Genetics, University of Washington, Seattle, WA

    Google Scholar 

  • Fernandes TA, Iyer V, Apte SK (1993) Differential responses of nitrogen-fixing cyanobacteria to salinity and osmotic stresses. Appl Environ Microbiol 59, 899–904

    PubMed  CAS  Google Scholar 

  • Gallon JR (1992) Reconciling the incompatible: N2 fixation and O2. New Phytol 122: 571–609

    Article  CAS  Google Scholar 

  • Gallon JR and Stal LJ (1992) N2 fixation in non-heterocystous cyanobacteria; an overview. In Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs. Carpenter EJ, Capone DG, Rueter JG (eds) Kluwer Academic Publishers, The Netherlands 115–140.

    Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature (London) 345: 60–63

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170: 3584–3592

    PubMed  CAS  Google Scholar 

  • Griffiths MSH, Gallon JR, Chaplin AE (1987) The diurnal pattern of dinitrogen fixation by cyanobacteria in situ. New Phytol 107: 649–657

    Article  Google Scholar 

  • Grobbelaar N, Huang TC, Lin HY, Chow TJ (1986) Dinitrogen-fixing endogenous rhythm in Synechococcus RF-1. FEMS Microbiol Lett 37: 173–177

    Article  CAS  Google Scholar 

  • Guerinot ML and Colwell RR (1985) Enumeration, isolation, and characterization of N2-fixing bacteria from seawater. Appl Environ Microbiol 50: 350–355

    PubMed  CAS  Google Scholar 

  • Haselkorn R, Basche M, Böhme B, Borthakur D, Borthakur PB, Buikema WJ, Mulligan ME, Norris D (1990) Nitrogen fixation in filamentous cyanobacteria. In Nitrogen Fixation: Achievements and Objectives Gresshoff PM, Roth LE, Stacey G, NewtonWE (eds.) Chapman and Hall, New York 497–504

    Google Scholar 

  • Hawser SP, O’Neil JM, Roman MR, Codd GA (1992) Toxicity of blooms of the cyanobacterium Trichodesmium to Zooplankton. J Appl Phycol 4: 79–86.

    Article  Google Scholar 

  • Home AJ and Goldman CR (1972) Nitrogen fixation in Clear Lake, California; 1. Seasonal variation and the role of heterocysts. Limnol Oceanogr 17: 678–692

    Article  Google Scholar 

  • Howarth RW and Cole JJ (1985) Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters. Science 229: 653–655

    Article  PubMed  CAS  Google Scholar 

  • Howarth RW, Marino R, Cole JJ (1988) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls. Limnol Oceanogr 33: 688–701

    Article  CAS  Google Scholar 

  • Huber AL (1984) Nodularia (cyanobacteriaceae) akinetes in the sediments of the Peel-Harvey estuary, Western Australia: Potential inoculum source for Nodularia blooms. Appl Environ Microbiol 47: 234–238

    PubMed  CAS  Google Scholar 

  • Jones K (1990) Aerobic nitrogen fixation by Lyngbya sp., a marine tropical cyanobacterium. Br Phycol J 25: 287–289

    Article  Google Scholar 

  • Kana TM (1993) Rapid oxygen cycling in Trichodesmium thiebautii. Limnol Oceanogr 38: 18–24

    Article  CAS  Google Scholar 

  • Kanemoto RH and Ludden PW (1984) Effect of ammonia, darkness, and phenazine methosulfate on whole-cell nitrogenase activity and Fe protein modification in Rhodospirillum rubrum. J Bacteriol 158: 713–720

    PubMed  CAS  Google Scholar 

  • Karl DM, Letelier R, Hebel DV, Bir DF, Winn CD (1992) Trichodesmium blooms and new nitrogen in the North Pacific Gyre. In Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs Carpenter EJ, Capone DG, Rueter JG (eds.). Kluwer Academic Publishers, The Netherlands 219–238

    Google Scholar 

  • Kawai A and Sugahara I (1971) Microbiological studies on nitrogen fixation in aquatic environments - III. On the nitrogen fixing bacteria in offshore regions. Bull Japanese Soc Scientific Fisheries 37: 981–985

    Article  Google Scholar 

  • Khamees HS, Gallon JR, Chaplin AE (1987) The pattern of acetylene reduction by cyanobacteria grown under alternating light and darkness. Br Phycol J 22: 55–60

    Article  Google Scholar 

  • Kirshtein JD, Paerl HW, Zehr J (1991) Amplification, cloning, and sequencing of a nifH segment from aquatic microorganisms and natural communities. Appl Environ Microbiol 57: 2645–2650

    PubMed  CAS  Google Scholar 

  • Lambert GR and Carr NG (1984) Resistance of DNA from filamentous and unicellular cyanobacteria to restriction endonuclease cleavage. Biochim Biophys Acta 781: 45–55

    PubMed  CAS  Google Scholar 

  • Lewin RA and Cheng L (Eds.) (1989) “Prochloron A Microbial Enigma”, Chapman and Hall, New York.

    Google Scholar 

  • Lewis MR, Ulloa O, Platt T (1988) Photosynthetic action, absorption, and quantum yield spectra for a natural population of Oscillatoria in the North Atlantic. Limnol Oceanogr 33: 92–98

    Article  Google Scholar 

  • Mague TH, Weare MM, Holm-Hansen O (1974) Nitrogen fixation in the north Pacific Ocean. Mar Biol 24: 109–119

    Article  CAS  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1991) The case for iron. Limnol Oceanogr 36: 1793–1802

    Article  Google Scholar 

  • Martínez LA, Silver MW, King JM, Alldredge AL (1983) Nitrogen fixation by floating diatom mats: a source of new nitrogen to oligotrophic ocean waters. Science 221: 152–154

    Article  PubMed  Google Scholar 

  • Maryan PS, Eady RR, Chaplin AE Gallon JR (1986) Nitrogen fixation by Gloeothece sp. PCC 6909: Respiration and not photosynthesis supports nitrogenase activity in the light. J Gen Microbiol 132: 789–796

    CAS  Google Scholar 

  • Mitsui A, Kumazawa S, Takahashi A, Ikemoto H, Cao S, Arai T (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow photo-autotrophically. Nature (London) 323: 720–722

    Article  CAS  Google Scholar 

  • Niemi A (1979) Blue-green algal blooms and N: P ratio in the Baltic Sea. Acta Bot Fenn 110: 57–61

    CAS  Google Scholar 

  • Ohki K and Fujita Y (1988) Aerobic nitrogenase activity measured as acetylene reduction in the marine non-heterocystous cyanobacterium Trichodesmium spp. grown under artificial conditions. Mar Biol 98: 111–114.

    Article  CAS  Google Scholar 

  • Ohki K, Zehr JP, Fujita Y (1992) Regulation of nitrogenase activity in relation to the light-dark regime in the filamentous non-heterocystous cyanobacterium Trichodesmium sp. NIBB 1067. J Gen Microbiol 138: 2679–2685

    CAS  Google Scholar 

  • Ohki K, Zehr JP Falkowski PG, Fujita Y (1991) Regulation of nitrogen-fixation by different nitrogen sources in the marine non-heterocystous cyanobacterium Trichodesmium sp. NIBB1067. Arch Microbiol 156: 335–337

    Article  CAS  Google Scholar 

  • Olson RJ, Chisholm SW, Zettler ER, Altabet M, Dusenberry J (1990) Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep Sea Res 37: 1033–1051

    Article  Google Scholar 

  • Paerl HW (1990) Physiological ecology and regulation of N2 fixation in natural waters. In Advances in Microbial Ecology Marshall KC (ed.) Plenum Publishing Corp 305–344

    Google Scholar 

  • Paerl HW and Bebout BM (1988) Direct measurement of O2-depleted microzones in marine Oscillatoria: Relation to N2 fixation. Science 241: 442–445

    Article  PubMed  CAS  Google Scholar 

  • Paerl HW and Prufert LE (1987) Oxygen-poor microzones as potential sites of microbial N2 fixation in nitrogen-depleted aerobic marine waters. Appl Environ Microbiol 53: 1078–1087

    PubMed  CAS  Google Scholar 

  • Paerl HW, Rudek J, Mallin MA (1990) Stimulation of phytoplankton production in coastal waters by natural rainfall inputs: nutritional and trophic implications. Mar Biol 107: 247–254

    Article  Google Scholar 

  • Paerl HW, Priscu JC, Brawner DL (1989) Immunochemical localization of nitrogenase in marine Trichodesmium aggregates: relationship to N2 fixation potential. Appl Environ Microbiol 55: 2965–2975

    PubMed  CAS  Google Scholar 

  • Paerl HW, Webb KL, Baker J, Wiebe WJ (1981) Nitrogen fixation in waters. In Nitrogen Fixation, Vol. J, Ecology Broughton WJ (ed) pp 193–240. Claredon Press, Oxford

    Google Scholar 

  • Pierrard J, Ludden PW, Roberts GP (1993) Posttranslational regulation of nitrogenase in Rhodobacter capsulatum. Existence of two independent regulatory effects of ammonium. J Bacteriol 175: 1358–1366

    PubMed  CAS  Google Scholar 

  • Pope MR, Murrell SA, Ludden PW (1985) Convalent modification of the iron protein of nitrogenase from Rhodospirillum rubrum by adenosine diphoshoribosylation of a specific arginine residue. Proc Natl Acad Sci USA 82:3173–3177

    Article  PubMed  CAS  Google Scholar 

  • Postgate JR (ed) (1987) Nitrogen Fixation 2nd Edition, Edward Arnold (Publishers) Ltd., London, England Potts M and Whitton BA (1977) Nitrogen fixation by blue-green algal communities in the intertidal zone of the lagoon of Aldabra Atoll. Oecologia 27: 275–283

    Google Scholar 

  • Proctor LM and Fuhrman JA (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343: 60–62

    Article  Google Scholar 

  • Prufert-Bebout L, Paerl HW, Lassen C (1993) Growth, nitrogen fixation, and spectral attenuation in cultivated Trichodesmium species. Appl Environ Microbiol 59: 1367–1375

    PubMed  CAS  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46: 205–222

    CAS  Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In The Sea Hill MN (ed.) Interscience Publishers, John Wiley and Sons, New York 26–77

    Google Scholar 

  • Reich S and Böger P (1989) Regulation of nitrogenase activity in Anabaena variabilis by modification of the Fe protein. FEMS Microbiol Lett 58: 81–86

    Article  CAS  Google Scholar 

  • Reynolds CS, Oliver RL Walsby AE (1987) Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. NZ J Mar Freshwater Res 21: 379–390

    Article  Google Scholar 

  • Roberts GP, Ludden PW, Burris RH, Fitzmaurice WP, Fu H-A, Nielsen G, Liang J-H, Lehman L, Woehle D, Lies D, Wirt H, Montogmery S, Davis R, Bao Y (1990) The genetics and biochemistry of the reversible ADP-ribosylation systems of Rhodospirillum rubrum and Azospirillum lipoferum. In Nitrogen Fixation: Achievements and Objectives. Gresshoff PM, Roth LE, Stacey G, Newton WE (eds.) Chapman and Hall, New York 475–482

    Google Scholar 

  • Roenneberg T and Carpenter EJ (1993) Daily rhythm of O2-evolution in the cyanobacterium Trichodesmium thiebautii under natural and constant conditions. Mar Biol 117: 693–697

    Article  CAS  Google Scholar 

  • Saino T and Hattori A (1978) Diel variation in nitrogen fixation by a marine blue-green alga, Trichodesmium thiebautii. Deep-Sea Res 25: 1259–1263

    Article  Google Scholar 

  • Sellner KG (1992) Trophodynamics of marine cyanobacteria blooms. In Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs. Carpenter EJ, Capone DG, Rueter JG (eds) Kluwer Academic Publishers, The Netherlands 75–94.

    Google Scholar 

  • Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bateriol 173: 4371–4378

    CAS  Google Scholar 

  • Sharp JH (1983) The distributions of inorganic nitrogen and dissolved and particulate organic nitrogen in the sea. In Nitrogen in the Marine Environment Carpenter EJ, and Capone DG (eds) Academic Press, Inc., New York 1–36.

    Google Scholar 

  • Siddiqui PJA, Carpenter EJ, Bergman B (1992) Trichodesmium: Ultrastructure and protein localization. In Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs Carpenter EJ, Capone DG, Rueter JG (eds) Kluwer Academic Publishers, The Netherlands 9–28

    Google Scholar 

  • Simon M and Azam F (1989) Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser 51: 201–213

    Article  CAS  Google Scholar 

  • Smith SV (1984) Phosphorus versus nitrogen limitation in the marine environment. Limnol Oceanogr 29: 1149–1160

    Article  CAS  Google Scholar 

  • Sprent JI and Sprent P (eds.) (1990) Nitrogen Fixing Organisms, Pure and Applied Aspects Chapman and Hall, New York

    Google Scholar 

  • Stal LJ and Bergman B (1990) Immunological characterization of nitrogenase in the filamentous non-heterocystous cyanobacterium Oscillatoria limosa. Planta 182: 287–291

    Article  CAS  Google Scholar 

  • Suttle CA, Chan AM, Cottrell MT (1991) Infection of phytoplankton by viruses and reduction of primary productivity. Nature (London) 347: 467–469

    Article  Google Scholar 

  • Sweeney BM and Borgese MB (1988) A circadian rhythm in cell division in a prokaryote, the cyanobacterium Synechococcus WH7803. J Phycol 25: 183–186

    Article  Google Scholar 

  • Tabita FR, Van Baalen C, Smith RL, Kumar D (1988) In vivo protection and recovery of nitrogenase from oxygen in heterocystous cyanobacteria. In Nitrogen Fixation: Hundred Years After. Bothe H, deBruijn FJ, Newton WE (eds.) Gustav Fischer, Stuttgart, New York 189–194

    Google Scholar 

  • Thomas WH (1970) On nitrogen deficiency in tropical Pacific Oceanic phytoplankton: photosynthetic parameters in poor and rich water. Limnol Oceangr 15: 380–385

    Article  CAS  Google Scholar 

  • Thorneley RNF and Ashby GA (1989) Oxidation of nitrogenase iron protein by dioxygen without inactivation could contribute to high respiration rates of Azotobacter species and facilitate nitrogen fixation in other aerobic environments. Biochem J 261: 181–187

    PubMed  CAS  Google Scholar 

  • Venrick EL (1974) The distribution and significance of Richelia intracellularis Schmidt in the North Pacific Central Gyre. Limnol Oceanogr 19: 437–445

    Article  Google Scholar 

  • Villareal TA (1994) Widespread occurrence of the Hemiaulus cyanobacterial symbiosis in the Southwest North Atlantic Ocean. Bull Mar Sci 54: 1–7

    Google Scholar 

  • Vitousek PM and Howarth RW (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochem 13: 87–115

    Article  Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58: 94–144

    PubMed  CAS  Google Scholar 

  • Walsby AE (1992) The gas vesicles and buoyancy of Trichodesmium. In Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs. Carpenter EJ, Capone DG, Rueter JG (eds) Kluwer Academic Publishers, Netherlands 141–162

    Google Scholar 

  • Waterbury JB and Valois FW (1993) Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl Environ Microbiol 59: 3393–3399

    CAS  Google Scholar 

  • Waterbury JB, Watson SW, Valois FW (1988) Temporal separation of photosynthesis and dinitrogen fixation in the marine unicellular cyanobacterium Erythrosphaera marin. EOS 69:1089

    Google Scholar 

  • Waterbury JB, Watson SW, Valois FW, Franks DG (1986) Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. In Photosynthetic Picoplankton Platt T and Li WKW (eds) Can Bull Fisheries Aquat Sci 214: 71–120

    Google Scholar 

  • Wiebe WJ, Johannes RE, Webb KL (1975) Nitrogen fixation in a coral reef community. Science 188: 257–259

    Article  PubMed  CAS  Google Scholar 

  • Wilmotte A, Neefs J-M, De Wachter R (1994) Evolutionary affiliation of the marine nitrogen-fixing cyanobacterium Trichodesmium sp. strain NIBB 1067, derived by 16S ribosomal RNA sequence analysis. Microbiol 140: 2159–2164

    Article  CAS  Google Scholar 

  • Wilson WH, Joint IR, Carr NG, Mann NH (1993) Isolation and molecular characterization of five marine cyanophages propagated on Synechococcus sp. Strain WH7803. Appl Environ Microbiol 59: 3736–3743

    CAS  Google Scholar 

  • Wyman M, Zehr JP, Capone, DG (1994) Temporal variability in nitrogenase gene expression in a natural population of the marine cyanobacteriumTrichodesmium thiebautii. Submitted to Appl Environ Microbiol

    Google Scholar 

  • Wynn-Williams DD and Rhodes ME (1974) Nitrogen fixation in seawater. J Appl Bact 37: 203–216

    Article  CAS  Google Scholar 

  • Xia Y, Burbank DE, Uher L, Rabussay D, Van Etten JL (1987) IL-3A virus infection of a Chlorella-like green alga induces a DNA restriction endonuclease with novel sequence specificity. Nucleic Acids Res 15: 6075–6090

    Article  PubMed  CAS  Google Scholar 

  • Young JPW (1992) Phylogenetic classification of nitrogen-fixing organisms. In Biological Nitrogen Fixation. Stacey G, Burns RH, Evans HJ (eds) Chapmanand Hall, Inc., New York 43–86

    Google Scholar 

  • Zehr JP and McReynolds LA (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55: 2522–2526

    PubMed  CAS  Google Scholar 

  • Zehr JP, Ohki K, Fujita Y (1991a) Arrangement of nitrogenase structural genes in an aerobic filamentous nonheterocystous cyanobacterium. J Bacteriol 173: 7055–7058.

    PubMed  CAS  Google Scholar 

  • Zehr JP, Ohki K., Fujita Y, Landry D (1991b) Unique modification of adenine in genomic DNA of the marine cyanobacterium Trichodesmium sp. strain NIBB 1067. J Bacteriol 173: 7059–7062

    PubMed  CAS  Google Scholar 

  • Zehr JP, Wyman M, Miller V, Duguay L, Capone DG (1993) Modification of the Fe protein of nitrogenase in natural populations of Trichodesmium thiebautii. Appl Environ Microbiol 59: 669–676

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zehr, J.P. (1995). Nitrogen Fixation in the Sea: Why Only Trichodesmium?. In: Joint, I. (eds) Molecular Ecology of Aquatic Microbes. NATO ASI Series, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79923-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79923-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79925-9

  • Online ISBN: 978-3-642-79923-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics