Skip to main content

Molecular Analysis of Plastid Evolution

  • Conference paper
Molecular Ecology of Aquatic Microbes

Part of the book series: NATO ASI Series ((ASIG,volume 38))

Abstract

The endosymbiotic origin of plastids from cyanobacterial endosymbionts is now generally accepted. Early formulations of this theory (Schimper, 1885; Mereschkowski, 1905) were induced by the mere similarity in morphology, chlorophyll pigments and photosynthetic function between the photosynthetic organelles of autotrophic eukaryotes and their ancestors and extant relatives, then termed “blue-green algae”. This pioneering idea formulated in the absence of any data in comparative biochemistry became forgotten for many years and had to compete after its revival (Margulis, 1970) with hypotheses postulating an autogenous origin of the eukaryotic cell through intracellular compartmentalization and functional specialization (Cavalier-Smith, 1975; Uzzell and Spolsky, 1974). Now a wealth of conclusive biochemical data is available. These should be reviewed briefly before entering into the molecular data, were doubtless responsible for the breakthrough of the endosymbiotic theory in the 1980s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apt K, Hoffman NE, Grossman AR (1993) The γ subunit of R-phycoerythrin and its possible mode of transport into the plastid of red algae. J Biol Chem 268: 16208–16215

    PubMed  CAS  Google Scholar 

  • Baldauf SL, Manhart JR, Palmer JD (1990) Different fates of the chloroplast tufA gene following its transfer to the nucleus in green algae. Proc Natl Acad Sci USA 87:5317–5321

    Article  PubMed  CAS  Google Scholar 

  • Bhaya D and Grossman AR (1991) Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum. Mol Gen Genet 229: 400–404

    Article  PubMed  CAS  Google Scholar 

  • Bonham-Smith PC and Bourque DP (1989) Translation of chloroplast-encoded mRNA: potential initiation and termination signals. Nucleic Acids Res 17: 2057–2080

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA (1992) Puzzles of chloroplast ancestry. Curr Biol 2: 240–242

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1975) The origin of nuclei and of eukaryotic cells. Nature 256: 463–468

    Article  Google Scholar 

  • Cavalier-Smith T (1987) The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann NY Acad Sci 503: 55–71

    Article  PubMed  CAS  Google Scholar 

  • Chan RL, Keller M, Canady Y, Weil JH, Imbault P (1990) Eight small subunits of Euglena ribulose-1,5-bisphosphate carboxylase/oxygenase are translated from a large mRNA as a polyprotein. EMBO J 9: 333–338

    PubMed  CAS  Google Scholar 

  • Cozens AL and Walker JE (1987) The organization and sequence of the genes for ATP synthase subunits in the cyanobacterium Synechococcus 6301. Support for an endosymbiont origin of chloroplasts. J Mol Biol 194: 359–383

    Article  PubMed  CAS  Google Scholar 

  • Curtis S (1994) Transcription apparatus and transcriptional regulation. In: The Molecular Biology of Cyanobacteria (Bryant DA, ed) Kluwer Academic Publishers Dordrecht, in press

    Google Scholar 

  • Dietrich A, Weil JH, Marechal-Drouard L (1992) Nuclear-encoded transfer RNAs in plant mitochondria. Ann Rev Cell Biol 8: 115–131

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE (1992) Probable evolutionary history of cryptomonad algae. In: Origins of Plastids Lewin RA (ed) Chapman and Hall New York and London 265–289

    Google Scholar 

  • Douglas SE and Turner S (1991) Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. J Mol Evol 33: 267–273

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Molecular evidence that cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature 350: 148–151

    Article  PubMed  CAS  Google Scholar 

  • Ernes MJ and Tobin AK (1993) Control of metabolism and development in higher plant plastids. In: International Review of Cytology, Vol 145 Jeon KW, Jarvik J, (eds) Academic Press Orlando 149–216

    Google Scholar 

  • Flachmann R, Michalowski CB, Löffelhardt W, Bohnert HJ (1993) SecY, an integral subunit of the bacterial preprotein translocase is encoded by a plastid genome. J Biol Chem 268: 7514–7519

    PubMed  CAS  Google Scholar 

  • Gibbs SP (1978) The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot 56: 2883–2889

    Article  Google Scholar 

  • Gray MW (1992) The endosymbiont hypothesis revisited. In: International Review of Cytology, Vol 141 Jeon KW, Jarvik J (eds) Academic Press Orlando 233–357

    Google Scholar 

  • Gray MW and Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46: 1–42

    PubMed  CAS  Google Scholar 

  • Greenwood AD, Griffith HB, Santore UJ (1977) Chloroplasts and cell compartments in cryptophyceae. Brit Phycol J 13: 119–124

    Google Scholar 

  • Hallick RB, Hong L, Drager RG, Favreau MR, Montfort A, Orsat B, Spielmann A, Stutz E (1993) Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res 21: 3537–3544

    Article  PubMed  CAS  Google Scholar 

  • Hansel A, Schmidt A, Tadros MH, Jürgens UJ (1994) Isolation and characterization of porin from the outer membrane of Synechococcus PCC 6301. Arch Microbiol 161: 163–167

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU and Neupert W (1990) Protein sorting to mitochondria: evolutionary conservation of folding and assembly. Science 247: 930–938

    Article  PubMed  CAS  Google Scholar 

  • Hofmann CJB, Rensing SA, Häuber MM, Martin WF, Müller SB, Couch J, Mc Fadden Gl, Igloi GL, Maier UG (1994) Smallest known eukaryotic genomes encode a protein: towards the understanding of nucleomorph functions. Mol Gen Genet, in press

    Google Scholar 

  • Igloi G and Kössel H (1992) The transcriptional apparatus of chloroplasts. Critical Reviews in Plant Sciences 10: 525–558

    Article  CAS  Google Scholar 

  • Kates M (ed) (1990) Handbook of lipid research Vol 6. Plenum Press New York London

    Google Scholar 

  • Kindl H (1994) Biochemie der Pflanzen. Springer Heidelberg

    Book  Google Scholar 

  • Kleinig H (1989) The role of plastids in isoprenoid biosynthesis. Anna Rev Plant Physiol 40: 39–59

    Article  CAS  Google Scholar 

  • Konishi T, Sasaki Y (1994) Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance towards herbicides. Proc Natl Acad Sci USA 91: 3598–3601

    Article  PubMed  CAS  Google Scholar 

  • Kowallik K (1992) Origin and evolution of plastids from chlorophyll a+c containing algae: Suggested ancestral relationships to red and green algal plastids. In: Origins of Plastids Lewin RA (ed) Chapman and Hall New York and London 223–263

    Google Scholar 

  • Krauss N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT, Saenger W (1993) Three-dimensional structure of system I of photosynthesis at 6 A resolution. Nature 361: 326–331

    Article  CAS  Google Scholar 

  • Lindahl L and Zengel JM (1986) Ribosomal genes in Escherichia coli. Annu Rev Genet 202: 186–193

    Google Scholar 

  • Last RL (1993) The genetics of nitrogen assimilation and amino acid biosynthesis in flowering plants: progress and prospects. In: International Review of Cytology, Vol 143 Jeon KW and Jarvik J (eds) Academic Press Orlando 297–333

    Google Scholar 

  • Löffelhardt W and Bohnert HJ (1994) Structure and function of the cyanelle genome. In: International Review of Cytology, Vol 151 Jeon KW, Jarvik J, (eds) Academic Press Orlando 29–66

    Google Scholar 

  • Margulis L (1970) The origin of eukaryotic cells. Yale University Press, New Haven

    Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. WH Freeman and Co San Francisco

    Google Scholar 

  • Merchant S, Bogorad L (1987) The Cu(II)-repressible plastidic cytochrome c. J Biol Chem 262: 9062–9067

    PubMed  CAS  Google Scholar 

  • Mereschkowski C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604

    Google Scholar 

  • Palenik B and Haselkorn R (1991) Multiple evolutionary origins of prochlorophytes, the Chlorophyll b-containing prokaryotes. Nature 355: 265–267.

    Article  Google Scholar 

  • Raven P (1970) A multiple origin of chloroplasts and mitochondria. Science 169: 641–646

    Article  PubMed  CAS  Google Scholar 

  • Reith M and Munholland J (1993) A high-resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5: 465–475

    CAS  Google Scholar 

  • Schimper AFW (1883) Über die Entwicklung der Chlorophyllkörner und Farbkörner. Bot Z 41: 105–114

    Google Scholar 

  • Schuster W and Brennicke A (1988) Interorganellar sequence transfer: plant mitochondrial DNA is nuclear, is plastid, is mitochondrial. Plant Sci 54: 1–10

    Article  CAS  Google Scholar 

  • Slabas AR and Fawcett T (1992) The biochemistry and molecular biology of plant lipid biosynthesis. Plant Mol Biol 19: 169–191

    Article  PubMed  CAS  Google Scholar 

  • Smeekens S, Weisbeek P, Robinson C (1990) Protein transport into and within chloroplasts. Trends Biochem Sci 15: 73–76

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19: 149–168

    Article  PubMed  CAS  Google Scholar 

  • Swiezewska E, Dallner G, Andersson B, Ernster L (1993) Biosynthesis of ubiquinone and plastoquinone in the endoplasmic reticulum-Golgi membranes of spinach leaves. J Biol Chem 268: 1494–1499

    PubMed  CAS  Google Scholar 

  • Timmis JN and Scott NS (1983) Sequence homology between spinach nuclear and chloroplast genomes. Nature 305: 65–67

    Article  CAS  Google Scholar 

  • Tsudzuki J, Ito S, Tsudzuki T, Wakasugi T, Sugiura M (1994) A new gene encoding tRNAPro(GGG) is present in the chloroplast genome of black pine: a compilation of 32 tRNA genes from black pine chloroplasts. Curr Genet 26: 153–158

    Article  PubMed  CAS  Google Scholar 

  • Turner S, Burger-Wiersma T, Giovannoni S J, Muur LR, Pace NR (1989) The relationship of a prochlorophyte, Prochlorothrix hollandica, to green chloroplasts. Nature 337: 380–382

    Article  PubMed  CAS  Google Scholar 

  • Uzzell T and Spolsky C (1974) Mitochondria and plastids as endosymbionts. A revival of special creation? Am Sci 62: 334–343

    PubMed  CAS  Google Scholar 

  • von Heijne G and Nishikawa K (1990) Chloroplast transit peptides. The perfect random coil? FEBS Lett 278: 1–3

    Article  Google Scholar 

  • Whatley JM (1993) The endosymbiotic origin of chloroplasts. In: International Review of Cytology, Vol 144 Jeon KW, Jarvik J (eds) Academic Press Orlando 259–299

    Google Scholar 

  • Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as revealed by sequencing the entire chloroplast genome of black pine, Pinus thunbergii. Proc Natl Acad Sci USA, 91: 9794–9798

    Article  CAS  Google Scholar 

  • Wickner W, Driessen AJM, Haiti FU (1991) The enzymology of protein translocation across the Escherichia coli plasma membrane. Annu Rev Biochem 60:101–124

    Article  PubMed  CAS  Google Scholar 

  • Witt D and Stackebrandt E (1988) Disproving the hypothesis of a common origin of the Ochromonas dánica chrysoplast and Heliobacterium chlorum. Arch Microbiol 150: 244–248

    Article  Google Scholar 

  • Woessner JP, Gillham NW, Boynton JE (1987) Chloroplast genes encoding subunits of the H+-ATPase complex of Chlamydomonas reinhardtii are rearranged compared to higher plants: sequence of the atpE gene and location of the atpF and atplgtms. Plant Mol Biol 8: 151–158

    Article  CAS  Google Scholar 

  • Zetsche K and Valentin K (1994) Structure, coding capacity and gene sequences of the plastid genome from red algae. Endocytobiosis Cell Res 10: 107–127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Löffelhardt, W. (1995). Molecular Analysis of Plastid Evolution. In: Joint, I. (eds) Molecular Ecology of Aquatic Microbes. NATO ASI Series, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79923-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79923-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79925-9

  • Online ISBN: 978-3-642-79923-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics