Skip to main content

How Do Cells Express Nutrient Limitation at the Molecular Level?

  • Conference paper
Molecular Ecology of Aquatic Microbes

Part of the book series: NATO ASI Series ((ASIG,volume 38))

Abstract

Microbial growth in both marine and freshwater environments is frequently restricted by nutrient availability. The process of nutrient limitation is not a sudden transition from an actively growing to a non-growing state, but rather involves sequential changes that first enable the organism to utilize appropriate reserves, scavenge trace amounts of the limiting nutrient, or to utilize alternative less preferred sources of the nutrient and then to undergo the various physiological and ultrastructural changes that allow prolonged survival in the non-growing state. The nature of the limiting nutrient will vary in response to a range of factors (geographical, seasonal, anthropogenic etc), but will most commonly be for one of the quantitatively major nutrients, namely carbon, nitrogen, phosphorus and sulphur. Though there is evidence that trace elements such as iron and zinc may limit productivity in some environments. Furthermore, in the case of photoautotrophic micro-organisms it is reasonable to consider light as a nutrient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiba H and Mizuno T (1994) A novel gene whose expression is regulated by the response, SphR, in response to phosphate limitation in Synechococcus species PCC7942. Mol Microbiol 13: 25–34

    Article  PubMed  CAS  Google Scholar 

  • Aiba H, Nagaya M, Mizuno T (1993) Sensor and regulator proteins from the cyanobacterium Synechococcus species PCC7942 that belong to the bacterial signal-transduction protein families: implication in the adaptive response to phosphate limitation. Mol Microbiol 8: 81–91

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim BiophysActa 1098: 275–335

    Article  CAS  Google Scholar 

  • Bagg A and Neilands JB (1987) Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol Rev 51: 509–518.

    PubMed  CAS  Google Scholar 

  • Bovy A, de Kruif J, de Vrieze G, Bornas M, Weisbeek P (1993) Iron-dependent protection of the Synechococcus ferredoxin I transcript against nucleolytic degradation requires cis-regulatory sequences in the 5′ part of the messenger RNA. Plant Mol Biol 22: 1047–1065

    Article  PubMed  CAS  Google Scholar 

  • Bovy A, de Vrieze G, Bornas M, Weisbeek P (1992) Transcriptional regulation of the plastocyanin and cytochrome c553 genes from the cyanobacterium Anabaena species PCC 7937. Mol Microbiol 6: 1507–1513

    Article  PubMed  CAS  Google Scholar 

  • Brahamsha B (1993) Identification of multiple RNA polymerase sigma factor omologs in cyanobacteria: group 2 sigmas in Anabaena sp. strain PCC 7120. Cyanobacterial Workshop Abstracts p22

    Google Scholar 

  • Briat J-F (1992) Iron assimilation and storage in prokaryotes. J Gen Microbiol 138: 2475–2483

    PubMed  CAS  Google Scholar 

  • Briggs LM, Pecoraro VL, Mcintosh L (1990) Copper-induced expression, cloning, and regulatory studies of the plastocyanin gene from the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 15: 633–642

    Article  PubMed  CAS  Google Scholar 

  • Buikema WJ and Haselkorn R (1993) Molecular genetics of cyanobacterial development. Ann Rev Plant Physiol Plant Mol Biol 44: 33–52

    Article  CAS  Google Scholar 

  • Burnap RL, Troyan T, Sherman LA (1993) The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp. PCC7942 (CP43’) is encoded by the isiA gene. Plant Physiol 103: 893–902

    Article  PubMed  CAS  Google Scholar 

  • Carr NG and Wyman M (1986) Cyanobacteria: their biology in relation to the oceanic phytoplankton. In Photosynthetic Picoplankton. Platt T, Li WKW (eds) Can Bull Fish Aquat Sci 214: 121–158

    Google Scholar 

  • Caslake LF and Bryant DA (1993) Characterization of sigma factors associated with the RNA polymerase of the unicellular cyanobacterium Synechococcus sp. PCC 7002. Cyanobacterial Workshop Abstracts p30

    Google Scholar 

  • Chastain CJ, Brusca JS, Ramasubramanian TS, Golden JW (1990) A sequence specific DNA-binding factor (VF1) from Anabaena sp. strain PCC 7120 vegetative cells binds to three adjacent sites in the xisA upstream region. J Bacteriol 172: 5044–5051

    PubMed  CAS  Google Scholar 

  • Collier JL and Grossman AR (1992) Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: Not all bleaching is the same. J Bacteriol 174: 4718–4726

    PubMed  CAS  Google Scholar 

  • Collier JL and Grossman AR (1993) Two novel genes involved in the biosynthesis of the photosynthetic apparatus in Synechococcus sp. strain PCC 7942. Cyanobacterial Workshop Abstracts p34

    Google Scholar 

  • Collier JL and Grossman AR (1994) A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO Journal 13: 1039–1047

    PubMed  CAS  Google Scholar 

  • Doige CA and Ames GF (1993) ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. Annu Rev Microbiol 47: 291–319

    Article  PubMed  CAS  Google Scholar 

  • Fagan MJ and Saier MH Jr (1994) P-type ATPases of eukaryotes and bacteria: Sequence analyses and construction of phylogenetic trees. J Mol Evol 38: 57–99

    Article  PubMed  CAS  Google Scholar 

  • Frías JE, Mérida A, Herrero A, Martín-Nieto J, Flores E (1993) General distribution of the nitrogen control gene ntcA in cyanobacteria. J Bacteriol 175: 5710–5713

    PubMed  Google Scholar 

  • Gentry DR, Hernandez VJ, Nguyen LH, Jensen DB, Cashel M (1993) Synthesis of the stationary phase sigma factor σS is positively regulated by ppGpp. J Bacteriol 175: 7982–7989

    PubMed  CAS  Google Scholar 

  • Ghassemian M, Wong B, Ferreira F, Markley JL, Straus NA (1994): Cloning, sequencing and transcriptional studies of the genes for cytochrome c-555 and plastocyanin from Anabaena sp. PCC 7120. Microbiology 140: 1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57: 725–749

    PubMed  CAS  Google Scholar 

  • Green LS and Grossman AR (1988) Changes in sulfate transport characteristics and protein composition of Anacystis nidulans during sulfur deprivation. J Bacteriol 170: 583–587

    PubMed  CAS  Google Scholar 

  • Green LS, Laudenbach DE, Grossman AR (1989) A region of a cyanobacterial genome required for sulfate transport. Proc Natl Acad Sci USA 86: 1949–1953

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Boil 8: 67–113

    Article  CAS  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57: 725–749

    PubMed  CAS  Google Scholar 

  • Guest JR (1992) Oxygen regulated gene expression in Escherichia coli. J Gen Microbiol 138: 2253–2263

    CAS  Google Scholar 

  • Hudson, RJM and Morel FMM (1993) Trace metal transport by marine microorganisms: implications of metal coordination kinetics. Deep-Sea Res 40: 129–150

    Article  CAS  Google Scholar 

  • Huisman GW and Kolter R (1994) Sensing starvation: a homoserine lactone-dependent signaling pathway in Escherichia coli. Science 265: 537–539.

    Article  PubMed  CAS  Google Scholar 

  • Hyde SC, Emsley P, Hartshorn MJ, Mimmack MM, Gileadi U (1990) Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346: 362–365

    Article  PubMed  CAS  Google Scholar 

  • Kanamaru K, Kashiwagi S, Mizuno T (1993) The cyanobacterium, Synechococcus sp. PCC7942, possesses two distinct genes encoding cation-transporting P-type ATPases. FEBS Lett 330: 99–104

    Article  PubMed  CAS  Google Scholar 

  • Kanamaru K, Kashiwagi S, Mizuno T (1994) A copper-transporting P-type ATPase found in the thylakoid of the cyanobacterium Synechococcus species PCC7942. Mol Microbiol 13:369–377

    Article  PubMed  CAS  Google Scholar 

  • Kerry A, Laudenbach DE, Trick CG (1988) Influence of iron limitation and nitrogen source on growth and siderophore production by cyanobacteria. J Phycol 24: 566–571.

    CAS  Google Scholar 

  • Kjellenberg S, Albertson N, Flärd K, Holmquist L, Jouper-Jaan Ã…, Marouga R, Östling J, Svenblad B, Weichart D (1993) How do non-differentiating bacteria adapt to starvation. Antonie van Leewenhoek: 63: 333–341

    Article  Google Scholar 

  • Kolter R, Siegele DA, Tormo A (1993) The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47: 855–874

    Article  PubMed  CAS  Google Scholar 

  • Laudenbach DE (1993) The involvement of a plasmid in the acclimation of cyanobacteria to sulfur stress. Cyanobacterial Workshop Abstracts p69

    Google Scholar 

  • Laudenbach DE and Grossman AR (1991) Characterization and mutagenesis of sulfur-regulated genes in a cyanobacterium: Evidence for function in sulfate transport. J Bacteriol 173: 2739–2750

    PubMed  CAS  Google Scholar 

  • Laudenbach DE, Reith ME, Straus NA (1988) Isolation, sequence analysis and transcriptional studies of the flavodoxin gene from Anacystis nidulans R2. J Bacteriol 170: 258–265

    PubMed  CAS  Google Scholar 

  • Laulhère JP, Labouré AM, van Wuytswinkel O, Gagnon J and Briat JF (1992) Purification, characterization and function of bacterioferritin from the cyanobacterium Synechocystis PCC 6803. Biochem J 281: 785–793

    PubMed  Google Scholar 

  • Leonhardt K and Straus NA (1992) An iron stress operon involved in photosynthetic electron transport in the marine cyanobacterium Synechococcus sp. PCC 7002. J Gen Microbiol 138: 1613–1621

    PubMed  CAS  Google Scholar 

  • Lukat GS, McCleary WR, Stock AM, Stock JB Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc Natl Acad Sci USA 89: 718–722.

    Google Scholar 

  • Luque I, Flores E, Herrero A (1994) Molecular mechanism for the operation of nitrogen control in cyanobacteria. EMBO J 13: 2862–2869

    PubMed  CAS  Google Scholar 

  • Mann N and Carr NG (1974) Control of macromolecular composition and cell division in the blue-green alga Anacystis nidulans. J Gen Microbiol 83: 399–405.

    CAS  Google Scholar 

  • Mann N, Carr NG, Midgley JEM (1975) RNA synthesis and the accumulation of guanine nucleotides during growth shift down in the blue-green alga Anacystis nidulans. Biochim Biophys Acta 402: 41–50

    CAS  Google Scholar 

  • Mann NH, Scanlan DJ (1994) The SphX protein of Synechococcus species PCC 7942 belongs to a family of phosphate binding proteins. Mol Microbiol. In press

    Google Scholar 

  • Mazel D and Marlière P (1989) Adaptive eradication of methionine and cysteine from cyanobacterial light harvesting proteins. Nature 341: 245–248

    Article  PubMed  CAS  Google Scholar 

  • Matin A, Auger EA, Blum PH, Schultz JE (1989) Genetic basis of starvation survival in nondifferentiating bacteria. Annu Rev Microbiol 43: 293–316

    Article  PubMed  CAS  Google Scholar 

  • McCleary WR, Stock JB, Ninfa AJ (1993) Is acetyl phosphate a global signal in Escherichia coli? J Bacteriol 175: 2793–2798

    PubMed  CAS  Google Scholar 

  • Morel FMM, Reinfelder JR, Roberts SB, Chamberlain CP, Lee JG, Yee D (1994) Zinc and carbon cO-limitation of marine phytoplankton. Nature 369: 740–742.

    Article  CAS  Google Scholar 

  • Nagaya M, Aiba H, Mizuno T (1994) The sphR product, a two-component system response regulator protein, regulates phosphate assimilation in Synechococcus sp. strain PCC 7942 by binding to two sites upstream from the phoA promoter. J Bacteriol 176: 2210–2215

    PubMed  CAS  Google Scholar 

  • Nakamura M, Yamagishi M, Yoshizaki F, Sugimura Y (1992) The syntheses of plastocyanin and cytochrome c-553 are regulated by copper at the pre-translational level in a green alga, Pediastrum boryanum. J Biochem 111: 219–224

    PubMed  CAS  Google Scholar 

  • Nyström T (1994) The glucose-starvation stimulon of Escherichia coli: induced and repressed synthesis of enzymes of central metabolic pathways and role of acetyl phosphate in gene expression and starvation survival. Mol Microbiol 12: 833–843

    Article  PubMed  Google Scholar 

  • Omata T (1991) Cloning and characterization of the nrtA gene that encodes a 45 kDa protein involved in nitrate transport in the cyanobacterium Synechococcus PCC 7942. Plant Cell Physiol 32: 151–157

    CAS  Google Scholar 

  • Omata T, Andriesse X, Hirano A (1993) Identification and characterization of a gene cluster involved in nitrate transport in the cyanobacterium Synechococcus sp. PCC7942. Mol Gen Genet 236: 193–202

    Article  PubMed  CAS  Google Scholar 

  • Omata T and Ogawa T (1987) Immunochemical studies on the major proteins in cytoplasmic membranes of cyanobacteria. In Progress in photosynthesis research, Biggins J (ed) Vol 4. Martinus Nijhoff, Dordrecht, 309–302

    Google Scholar 

  • Price NM and Morel FMM (1990) Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344: 658–660

    Article  CAS  Google Scholar 

  • Rao NN and Torriani A (1990) Molecular aspects of phosphate transport in Escherichia coli Mol Microbiol 4: 1083–1090

    Google Scholar 

  • Ray JM, Bhaya D, Block MA and Grossman AR (1991) Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. strain PCC 7942. J Bacteriol 173: 4297–4309

    PubMed  CAS  Google Scholar 

  • Reddy KJ, Bullerjahn GS, Sherman DM and Sherman LA (1988) Cloning, nucleotide sequence, and mutagenesis of a gene (irpA) involved in iron-deficient growth of the cyanobacterium Synechococcus sp. strain PCC7942. J Bacteriol 170: 4466–4476

    PubMed  CAS  Google Scholar 

  • Ronen-Tarazi M, Schwarz R, Bouevitch A, Lieman-Hurwitz J, Erez J, Kaplan A (1995) Response of photosynthetic microorganisms to changing ambient concentrations of CO2- This volume 323–334

    Google Scholar 

  • Scanlan DJ, Mann NH, Carr NG (1993) The response of the picoplanktonic marine cyanobacterium Synechococcus species WH7803 to phosphate starvation involves a protein homologous to the periplasmic phosphate-binding protein of Escherichia coli. Mol Microbiol 10: 181–191

    Article  PubMed  CAS  Google Scholar 

  • Shaw DJ, Rice DW, Guest JR (1983) Homology between CAP and Fnr, a regulator of anaerobic respiration in Escherichia coli. J Mol Biol 166: 241–247

    Article  PubMed  CAS  Google Scholar 

  • Siegele DA and Kolter R (1992) Life after log. J Bacteriol 174: 345–348

    PubMed  CAS  Google Scholar 

  • Stock JB, Ninfa AJ, Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53: 450–490

    PubMed  CAS  Google Scholar 

  • Swift S, Bainton NJ, Winson MK (1994) Gram-negative bacterial communication by N-acyl homoserine lactones: a universal language? Trends Microbiol 2: 193–198

    Article  PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N, Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Rev 104: 119–190.

    Article  CAS  Google Scholar 

  • Vega-Pala MA, Flores, E, Herrero A (1992) NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators. Mol Microbiol 6: 1853–1859

    Article  Google Scholar 

  • Vega-Palas MA, Madueño F, Herrero A, Flores E (1990) Identification and cloning of a regulatory gene for nitrogen assimilation in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 172: 643–647

    PubMed  CAS  Google Scholar 

  • Wagner F, Gimona M, Ahorn H, Peschek G A, Falkner G (1994) Isolation and functional reconstitution of a phosphate binding protein of the cyanobacterium Anacystis nidulans induced during phosphate-limited growth. J Biol Chem 269:5509–5511

    PubMed  CAS  Google Scholar 

  • Wanner BL and Wilmes-Riesenberg MR (1992) Involvement of phospho-transacetylase, acetate kinase, and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli. J Bacteriol 174: 2124–2130

    PubMed  CAS  Google Scholar 

  • Wei TF, Ramasubramanian TS, Pu F, Golden JW (1993) Anabaena sp. strain PCC 7120 bifA gene encoding a sequence-specific DNA-binding protein cloned by in vivo transcriptional interference selection. J Bacteriol 175: 4025–4035

    PubMed  CAS  Google Scholar 

  • Wei TF, Ramasubramanian TS, Golden JW (1994) Anabaena sp. strain PCC 7120 ntcA gene required for growth on nitrate and heterocyst development. J Bacteriol 176: 4473–4482

    PubMed  CAS  Google Scholar 

  • Young CC and Bernlohr RW (1991) Elongation factor Tu is methylated in response to nutrient deprivation in Escherichia coli. J Bacteriol 173: 3096–3100.

    PubMed  CAS  Google Scholar 

  • Zhang L, McSpadden B, Pakrasi HB, Whitmarsh J (1992) Copper-mediated regulation of cytochrome c553 and plastocyanin in the cyanobacterium Synechocystis 6803. J Biol Chem 267: 19054–19059

    PubMed  CAS  Google Scholar 

  • Zinkel SS and Crothers DM (1991) Catabolite activator protein-induced DNA bending in transcriptional initiation. J Mol Biol 219: 201–205.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mann, N.H. (1995). How Do Cells Express Nutrient Limitation at the Molecular Level?. In: Joint, I. (eds) Molecular Ecology of Aquatic Microbes. NATO ASI Series, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79923-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79923-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79925-9

  • Online ISBN: 978-3-642-79923-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics