Skip to main content

Role of Nitric Oxide in Cerebral Ischemia

  • Chapter
Book cover Role of Nitric Oxide in Sepsis and ADRS

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 24))

Abstract

In this chapter, we will discuss the role of nitric oxide (NO) as an important mediator of cerebral vascular tone and in the mechanism of cerebral blood flow (CBF) changes during cerebral ischemia and reperfusion and during reperfusion. We also address the possibility that NO may be an important mediator of brain injury in the setting of focal ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furchgott RF (1983) Role of endothelium in responses of vascular smooth muscle. Circ Res 53:557–573

    PubMed  CAS  Google Scholar 

  2. Faraci FM (1990) Role of nitric oxide in regulation of basilar artery tone in vivo. Am J Physiol 259: H1216-H1221

    Google Scholar 

  3. Rosenblum WI, Nelson GH, Povlishock JT (1987) Laser-induced endothelial damage inhibits endothelium-dependent relaxation in the cerebral microcirculation of the mouse. Circ Res 60:169–176

    PubMed  CAS  Google Scholar 

  4. Myers PR, Minor RL Jr, Guerra R Jr, Bates JN, Harrison DG (1990) Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitroso- cysteine than nitric oxide. Nature 345:161–163

    Article  PubMed  CAS  Google Scholar 

  5. Moncada S, Radomski MW, Palmer RM (1988) Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem Pharmacol 37:2495–2501

    Article  PubMed  CAS  Google Scholar 

  6. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666

    Article  PubMed  CAS  Google Scholar 

  7. Toda N, Okamura T (1990) Mechanism underlying the response to vasodilator nerve stimulation in isolated dog and monkey cerebral arteries. Am J Physiol 259: H1511-H1517

    Google Scholar 

  8. Murphy S, Minor RL Jr, Welk G, Harrison DG (1990) evidence for an astrocyte-de- rived vasorelaxing factor with properties similar to nitric oxide. J Neurochem 55: 349–351

    Article  PubMed  CAS  Google Scholar 

  9. Rosenblum WI, Nishimura H, Nelson GH (1990) Endothelium-dependent L-Arg- and L-NMMA-sensitive mechanisms regulate tone of brain microvessels. Am J Physiol 259: H1396-H1401

    Google Scholar 

  10. Busija DW, Leffler CW, Wagerle LC (1990) Mono-L-arginine-containing compounds dilate piglet pial arterioles via an endothelium-derived relaxing factor-like substance. Circ Res 67:1374–1380

    PubMed  CAS  Google Scholar 

  11. Tanaka K, Gotoh F, Gomi S, et al (1991) Inhibition of nitric oxide synthesis induces a significant reduction in local cerebral blood flow in the rat. Neurosci Lett 127:129–132

    Article  PubMed  CAS  Google Scholar 

  12. Greenberg RS, Helfaer MA, Kirsch JR, Moore LE, Traystman RJ (1994) Nitric oxide synthase inhibition with NG-mono-methyl-L-arginine reversibly decreases cerebral blood flow in piglets. Critical Care Med 22:384–392

    Article  CAS  Google Scholar 

  13. Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770

    Article  PubMed  CAS  Google Scholar 

  14. Faraci FM, Heistad DD (1992) Does basal production of nitric oxide contribute to regulation of brain-fluid balance? Am J Physiol 262: H340-H344

    Google Scholar 

  15. Kovach AGB, Szabo C, Benyo Z, Csaki C, Greenberg JH, Reivich M (1992) Effects of NG-nitro-L-arginine and L-arginine on regional cerebral blood flow in the cat. J Physiol (Lond) 449:183–196

    CAS  Google Scholar 

  16. Kirsch JR, Helfaer MA, Blizzard K, Toung TJ, Traystman RJ (1990) Age-related cerebrovascular response to global ischemia in pigs. Am J Physiol 259:H1551-H1558

    Google Scholar 

  17. Greenberg RS, Helfaer MA, Kirsch JR, Traystman RJ (1995) The effect of nitric oxide synthase inhibition upon post-ischemic cerebral hyperemia. Am J Physiol (In Press)

    Google Scholar 

  18. Nozaki K, Moskowitz MA, Maynard KI, et al (1993) Possible origins and distribution of immunoreactive nitric oxide synthase-containing nerve fibers in cerebral arteries. J Cereb Blood Flow Metab 13:70–79

    Article  PubMed  CAS  Google Scholar 

  19. McCall TB, Boughton Smith NK, Palmer RM, Whittle BJ, Moncada S (1989) Synthesis of nitric oxide from L-arginine by neutrophils. Release and interaction with superoxide anion. Biochem J 261:293–296

    PubMed  CAS  Google Scholar 

  20. Nishikawa T, Kirsch JR, Koehler RC, Bredt DS, Snyder SH, Traystman RJ (1993) Effect of nitric oxide synthase inhibition on cerebral blood flow and injury volume during focal ischemia in cats. Stroke 24:1717–1724

    Article  PubMed  CAS  Google Scholar 

  21. Faraci FM, Brian JEJ (1994) Nitric oxide and the cerebral circulation. Stroke 25: 692–703

    Article  PubMed  CAS  Google Scholar 

  22. Helfaer MA, Kirsch JR, Haun SE, Moore LE, Traystman RJ (1991) Polyethylene glycol conjugated superoxide dismutase fails to blunt post-ischemic reactive hyperemia. Am J Physiol 261: H548-H553

    Google Scholar 

  23. Haun SE, Kirsch JR, Helfaer MA, Kubos KL, Traystman RJ (1991) Polyethylene gly- col-conjugated superoxide dismutase fails to augment brain superoxide dismutase activity in piglets. Stroke 22:655–659

    Article  PubMed  CAS  Google Scholar 

  24. Moskowitz MA, Sakas DE, Wei EP, et al (1989) Postocclusive cerebral hyperemia is markedly attenuated by chronic trigeminal ganglionectomy. Am J Physiol 257: H1736-H1739

    Google Scholar 

  25. Snyder JV, Nemoto EM, Carroll RG, Safar P (1975) Global ischemia in dogs: Intracranial pressures, brain blood flow and metabolism. Stroke 6:21–27

    Article  PubMed  CAS  Google Scholar 

  26. Kontos CD, Wei EP, Williams JI, Kontos HA, Povlishock JT (1992) Cytochemical detection of superoxide in cerebral inflammation and ischemia. Am J Physiol 263: H1234-H1242

    Google Scholar 

  27. Wei EP, Christman CW, Kontos HA, Povlishock JT (1985) Effects of oxygen radicals on cerebral arterioles. Am J Physiol 248:H157-H162

    Google Scholar 

  28. Clavier N, Kirsch JR, Hum PD, Traystman RJ (1994) Cerebral blood flow is reduced by N-nitro-L-arginine methyl ester during delayed hypoperfusion in cats. Am J Physiol 267:H174-H181

    Google Scholar 

  29. Prado R, Watson BD, Wester P (1993) Effects of nitric oxide synthase inhibition on cerebral blood flow following bilateral carotid artery occlusion and recirculation in the rat. J Cereb Blood Flow Metab 13:720–723

    Article  PubMed  CAS  Google Scholar 

  30. McCall TB, Feelisch M, Palmer RM, Moncada S (1991) Identification of N-iminoethyl- L-ornithine as an irreversible inhibitor of nitric oxide synthase in phagocytic cells. Br J Pharmacol 102:234–238

    PubMed  CAS  Google Scholar 

  31. Prado R, Watson BD, Kuluz J, Dietrich WD (1992) Endothelium-derived nitric oxide synthase inhibition effects on cerebral blood flow, pial artery diameter, and vascular morphology in rats. Stroke 23:1118–1124

    Article  PubMed  CAS  Google Scholar 

  32. Nishimura H, Rosenblum WI, Nelson GH, Boynton S (1991) Agents that modify EDRF formation alter antiplatelet properties of brain arteriolar endothelium in vivo. Am J Physiol 261: H15-H21

    Google Scholar 

  33. Macfarlane R, Moskowitz MA, Tasdemiroglu E, Wei EP, Kontos HA (1991) Post- ischemic cerebral blood flow and neuroeffector mechanisms. Blood Vessels 28:46–51

    PubMed  CAS  Google Scholar 

  34. Katusic ZS, Michenfelder JD, Milde JH (1991) Ischemia-reperfusion does not affect reactivity of isolated canine basilar artery. J Cereb Blood Flow Metab 11:824–828

    Article  PubMed  CAS  Google Scholar 

  35. Clavier N, Kirsch JR, Hurn PD, Traystman RJ (1994) Effect of postischemic hypoperfusion on vasodilatory mechanisms in cat. Am J Physiol 267:H2012-H2018

    Google Scholar 

  36. Wang Q, Pelligrino DA, Koenig HM, Albrecht RF (1994) The role of endothelium and nitric oxide in rat pial arteriolar dilatory responses to C02 in vivo. J Cereb Blood Flow Metab 14:944–951

    Article  PubMed  CAS  Google Scholar 

  37. Nelson CW, Wei EP, Povlishock JT, Kontos HA, Moskowitz MA (1992) Oxygen radicals in cerebral ischemia. Am J Physiol 263:H1356-H1362

    Google Scholar 

  38. Wei EP, Moskowitz MA, Boccalini P, Kontos HA (1992) Calcitonin gene-related peptide mediates nitroglycerin and sodium nitroprusside-induced vasodilation in feline cerebral arterioles. Circ Res 70:1313–1319

    PubMed  CAS  Google Scholar 

  39. Faraci FM (1991) Role of endothelium-derived relaxing factor in cerebral circulation: Large arteries vs. microcirculation. Am J Physiol 261: H1038-H1042

    Google Scholar 

  40. Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical culture. Proc Natl Acad Sci USA 88:6368–6371

    Article  PubMed  CAS  Google Scholar 

  41. Moncada S, Palmer RM, Higgs EA (1989) Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol 38:1709–1715

    Article  PubMed  CAS  Google Scholar 

  42. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374

    Article  PubMed  CAS  Google Scholar 

  43. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  PubMed  CAS  Google Scholar 

  44. Buisson A, Plotkine M, Boulu RG (1992) The neuroprotective effect of a nitric oxide inhibitor in a rat model of focal cerebral ischemia. Br J Pharmacol 106:766–767

    PubMed  CAS  Google Scholar 

  45. Nowicki JP, Duval D, Poignet H, Scatton B (1991) Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur J Pharmacol 204:339–340

    Article  PubMed  CAS  Google Scholar 

  46. Kano M, Moskowitz MA, Yokota M (1991) Parasympathetic denervation of rat pial vessels significantly increases infarction volume following middle cerebral artery occlusion. J Cereb Blood Flow Metab 11:628–637

    Article  PubMed  CAS  Google Scholar 

  47. Reis DJ, Berger SB, Underwood MD, Khayata M (1991) Electrical stimulation of cerebellar fastigial nucleus reduces ischemic infarction elicited by middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 11:810–818

    Article  PubMed  CAS  Google Scholar 

  48. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1995) Effects of focal ischemia in mice deficient in neuronal nitric oxide synthase. Stroke 26: 13

    Google Scholar 

  49. Dawson TM, Dawson VL, Snyder SH (1992) A novel neuronal messenger molecule in brain: The free radical, nitric oxide. Ann Neurol 32:297–311

    Article  PubMed  CAS  Google Scholar 

  50. Trifiletti RR (1992) Neuroprotective effects of NG-nitro-L-arginine in focal stroke in the 7-day old rat. Eur J Pharmacol 218:197–198

    Article  PubMed  CAS  Google Scholar 

  51. Nehls DG, Todd MM, Spetzler RF, Drummond JC, Thompson RA, Johnson PC (1987) A comparison of the cerebral protective effects of isoflurane and barbiturates during temporary focal ischemia in primates. Anesthesiology 66:453–464

    Article  PubMed  CAS  Google Scholar 

  52. Greenberg RS, Kirsch JR, Helfaer MA, Moore LE, Traystman RJ (1991) N-monome- thyl-L-arginine decreases cerebral blood flow in piglets. FASEB J 5: A375 (Abst)

    Google Scholar 

  53. Sancesario G, Iannone M, D’Angelo V, Nistico G, Bemardi G (1992) Nw-nitro-L-argi- nine-methyl ester inhibits electrocortical recovery subsequent to transient global brain ischemia in mongolian gerbil. Funct Neurol 7:123–127

    PubMed  CAS  Google Scholar 

  54. Yamamoto S, Golanov EV, Berger SB, Reis DJ (1992) Inhibition of nitric oxide synthesis increases focal ischemic infarction in rat. J Cereb Blood Flow Metab 12:717–726

    Article  PubMed  CAS  Google Scholar 

  55. Nishikawa T, Kirsch JR, Koehler RC, Miyabe M, Traystman RJ (1994) Nitric oxide synthase inhibition reduces caudate injury following transient focal ischemia in cats. Stroke 25:877–885

    Article  PubMed  CAS  Google Scholar 

  56. Malinski T, Bailey F, Zhang ZG, Chopp M (1993) Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 13:355–358

    Article  PubMed  CAS  Google Scholar 

  57. Baker AJ, Zornow MH, Scheller MS, et al (1991) Changes in extracellular concentration of glutamate, aspartate, glycine, dopamine, serotonin, and dopamine metabolites after transient global ischemia in the rabbit brain. J Neurochem 57:1370–1379

    Article  PubMed  CAS  Google Scholar 

  58. Nishikawa T, Kirsch JR, Koehler RC, Miyabe M, Traystman RJ (1994) Competitive N-methyl-D-aspartate receptor blockade reduces brain injury following transient focal ischemia in cats. Stroke 25:2258–2264

    Article  PubMed  CAS  Google Scholar 

  59. Yang ST, Mayhan WG, Faraci FM, Heistad DD (1991) Endothelium-dependent responses of cerebral blood vessels during chronic hypertension. Hypertension 17:612–618

    PubMed  CAS  Google Scholar 

  60. Clavier N, Tobin J, Kirsch JR, Izuta M, Traystman RJ (1994) Brain nitric oxide synthase activity in normal, hypertensive, and stroke prone rats. Stroke 25:1674–1678

    Article  PubMed  CAS  Google Scholar 

  61. Peuler JD, Schelper RL (1992) Partial protection from salt-induced stroke and mortality by high oral calcium in hypertensive rats. Stroke 23:532–538

    Article  PubMed  CAS  Google Scholar 

  62. Mayhan WG (1992) Role of prostaglandin H2-thromboxane A2 in responses of cerebral arterioles during chronic hypertension. Am J Physiol 262: H539-H543

    Google Scholar 

  63. Tagami M, Yamori Y (1988) Morphological analysis of the pathogenesis of hypertensive cerebrovascular lesions: Role of monocytes and platelets in intracerebral vessel occlusions. Jpn Circ J 52:1351–1356

    Article  PubMed  CAS  Google Scholar 

  64. Wuorela H, Porsti I, Arvola P, Makynen H, Vapaatalo H (1992) Three levels of dietary calcium-effects on blood pressure and electrolyte balance in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 346:542–549

    Article  PubMed  CAS  Google Scholar 

  65. Honda H, Shibuya T, Salafsky B (1990) Brain synaptosomal Ca2+ uptake: Comparison of Sprague-Dawley, Wistar-Kyoto and spontaneously hypertensive rats. Comp Bio-chem Physiol [B] 95:555–558

    Article  CAS  Google Scholar 

  66. Chen PY, Sanders PW (1991) L-arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats. J Clin Invest 88:1559–1567

    Article  PubMed  CAS  Google Scholar 

  67. Stier CT Jr, Sim GJ, Levine S (1991) Dietary arginine falls to protect against cerebrovascular damage in stroke-prone hypertensive rats. Brain Res 549:354–356

    Article  PubMed  CAS  Google Scholar 

  68. Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339:572–575

    Article  PubMed  CAS  Google Scholar 

  69. Ogiku N, Sumikawa H, Hashimoto Y, Ishida R (1993) Prophylactic effect of imidapril on stroke in stroke-prone spontaneously hypertensive rats. Stroke 24:245–252

    Article  PubMed  CAS  Google Scholar 

  70. Izuta M, Clavier N, Kirsch JR, Traystman RJ (1995) Cerebral blood flow during inhibition of brain nitric oxide synthase activity in normal, hypertensive, and stroke prone rats. Stroke (In press)

    Google Scholar 

  71. Yamori Y, Horie R, Tanase H, Fujiwara K, Nara Y, Lovenberg W (1984) Possible role of nutritional factors in the incidence of cerebral lesions in stroke-prone spontaneously hypertensive rats. Hypertension 6:49–53

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirsch, J.R., Traystman, R.J. (1995). Role of Nitric Oxide in Cerebral Ischemia. In: Fink, M.P., Payen, D. (eds) Role of Nitric Oxide in Sepsis and ADRS. Update in Intensive Care and Emergency Medicine, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79920-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79920-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79922-8

  • Online ISBN: 978-3-642-79920-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics