Skip to main content

Influence of Nitric Oxide on Cardiac Systolic and Diastolic Function

  • Chapter
Role of Nitric Oxide in Sepsis and ADRS

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 24))

  • 55 Accesses

Abstract

The highly reactive gas, nitric oxide (NO), is now recognized to be a ubiquitous inter- and intra-cellular signaling molecule which has pivotal roles in many physiological processes, e.g. endothelial regulation of vascular smooth muscle tone and smooth muscle cell proliferation, inhibition of platelet adhesion and aggregation, peripheral and central neurotransmission, macrophage cytotoxicity, etc. (for reviews, see [1, 2]). In addition, an increasing body of data implicates abnormalities of NO pathway in several pathophysiological processes. The present chapter focuses on recent work which indicates that NO also has important physiological and pathophysiological influences on myocardial contractile function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moncada S, Palmer RMJ, Higgs HA (1991) Nitric oxide. Physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  2. Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051–3064

    PubMed  CAS  Google Scholar 

  3. Stamler JS, Singel DJ, Loscalzo J (1993) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    Article  Google Scholar 

  4. Smith J A, Shah AM, Lewis MJ (1991) Factors released from the endocardium of the ferret and pig modulate myocardial contraction. J Physiol 439:1–14

    PubMed  CAS  Google Scholar 

  5. Shah AM, Lewis MJ, Henderson AH (1990) Effects of 8-bromo-cyclic GMP on contraction and on inotropic response of ferret cardiac muscle. J Mol Cell Cardiol 23: 55–64

    Article  Google Scholar 

  6. Grocott-Mason RM, Fort S, Lewis MJ, Shah AM (1994) Myocardial relaxant effect of exogenous nitric oxide in the isolated ejecting heart. Am J Physiol 266: HI699-H1705

    Google Scholar 

  7. Grocott-Mason RM, Anning PB, Evans H, Lewis MJ, Shah AM (1994) Modulation of left ventricular relaxation in isolated ejecting heart by endogenous nitric oxide. Am J Physiol 267: H1804-H1813

    Google Scholar 

  8. Shah AM, Spurgeon H, Sollott SJ, Talo A, Lakatta EG (1994) 8-bromo cyclic GMP reduces the myofilament response to calcium in intact cardiac myocytes. Circ Res 74: 970–978

    PubMed  CAS  Google Scholar 

  9. Paulus WJ, Vantrimpont PJ, Shah AM (1994) Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in man. Circulation 89:2070–2078

    PubMed  CAS  Google Scholar 

  10. Kojda G, Kottenberg K, Nix P, Schluter KD, Piper HM (1994) Opposite responses of rat cardiac myocytes to different nitrovasodilators. Circulation 90:1–592 (Abst)

    Google Scholar 

  11. Brady AJB, Warren JB, Poole-Wilson PA, Williams TJ, Harding SE (1993) Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 265:H176-H182

    Google Scholar 

  12. Paulus WJ, Vantrimpont PJ, Shah AM (1994) Paracrine coronary endothelial control of left ventricular function in humans. Circulation 90:1–17 (Abst)

    Google Scholar 

  13. Hutcheson IR, Griffith TM (1991) Release of endothelium-derived relaxing factor is modulated both by frequency and amplitude of pulsatile flow. Am J Physiol 261: H257-H262

    Google Scholar 

  14. Lamontagne D, Pohl U, Busse R (1992) Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed. Circ Res 70:123–130

    PubMed  CAS  Google Scholar 

  15. Balligand JL, Kelly RA, Marsden PA, Smith TW, Michel T (1993) Control of cardiac muscle function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci USA 90:347–351

    Article  PubMed  CAS  Google Scholar 

  16. Mery PF, Pavoine C, Belhassen L, Pecker F, Fischmeister R (1994) Nitric oxide regulates cardiac Ca2+ current. J Biol Chem 268:26286–26295

    Google Scholar 

  17. Roberts AB, Vodovotz Y, Roche NS, Sporn MB, Nathan CF (1992) Rble of nitric oxide in antagonistic effects of transforming growth factor-p and interleukin-lβ on the beating rate of cultured cardiac myocytes. Mol Endocrinol 6:1921–1930

    Article  PubMed  CAS  Google Scholar 

  18. Han X, Shimoni Y, Giles WR (1994) An obligatory role for nitric oxide in autonomic control of mammalian heart rate. J Physiol 476:309–314

    PubMed  CAS  Google Scholar 

  19. Lincoln TM, Cornwell TL (1993) Intracellular cyclic GMP receptor proteins. FASEB J 7:328–338

    PubMed  CAS  Google Scholar 

  20. Pfitzer G, Riiegg JC, Flockerzi V, Hofmann F (1982) cGMP-dependent protein kinase decreases calcium sensitivity of skinned cardiac fibers. FEBS Lett 149:171–175

    Article  PubMed  CAS  Google Scholar 

  21. Schulz R, Nava E, Moncada S (1992) Induction and biological relevance of a Ca+ + - independent nitric oxide synthase in the myocardium. Br J Pharmacol 105:575–580

    PubMed  CAS  Google Scholar 

  22. Brady AJB, Poole-Wilson PA, Harding SE, Warren JB (1992) Nitric oxide within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 263: H1963-H1966

    Google Scholar 

  23. Evans HG, Lewis MJ, Shah AM (1993) Interleukin-lβ modulates myocardial contraction via dexamethasone-sensitive production of nitric oxide. Cardiovasc Res 27: 1486–1490

    Article  PubMed  CAS  Google Scholar 

  24. Balligand JL, Ungureanu D, Kelly RA, et al (1993) Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 91:2314–2319

    Article  PubMed  CAS  Google Scholar 

  25. Kinugawa K, Takahashi T, Kohmoto O, et al. (1994) Nitric oxide-mediated effects of interleukin-6 on [Ca2+]i and cell contraction in cultured chick ventricular myocytes. Circ Res 75:285–295

    PubMed  CAS  Google Scholar 

  26. Lancaster JR, Langrehr JM, Bergonia HA, Murase N, Simmons RL, Hoffman RA (1992) EPR detection of heme and non-heme iron-containing protein nitrosylation by nitric oxide during rejection of rat heart allograft. J Biol Chem 267:10994–10998

    PubMed  CAS  Google Scholar 

  27. Yang X, Chowdhury N, Cai B, et al (1994) Induction of myocardial nitric oxide synthase by cardiac allograft rejection. J Clin Invest 94:714–721

    Article  PubMed  CAS  Google Scholar 

  28. Tsujino M, Hirata Y, Imai T, et al (1994) Induction of nitric oxide synthase gene by interleukin-lβ in cultured rat cardiocytes. Circulation 90:375–383

    PubMed  CAS  Google Scholar 

  29. Dudek RR, Wildhirt S, Pinto V, Giesler G, Bing RJ (1994) Dexamethasone inhibits the expression of an inducible nitric oxide synthase in infarcted rabbit myocardium. Bio- chem Biophys Res Commun 202:1120–1126

    Article  CAS  Google Scholar 

  30. De Belder AJ, Radomski MW, Why HJF, et al (1993) Nitric oxide synthase in human myocardium. Lancet 341:84–85

    Article  PubMed  Google Scholar 

  31. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257: 387–389

    Article  PubMed  CAS  Google Scholar 

  32. Shah AM (1994) Modulation of myocardial contractile function by endothelium. In: Haunso S, Kjeldsen K (eds) Proceedings of the International Society for Heart Research European Section Meeting. Monduzzi Editore, Bologna, pp 53–60

    Google Scholar 

  33. Shah AM, Silverman HS, Lakatta EG (1993) Cyclic GMP abolishes relaxation abnormalities at reoxygenation following brief anoxia in single cardiac myocytes. Circulation 88:1–3 (Abst)

    Google Scholar 

  34. Hasebe N, Shen YT, Vatner SF (1993) Inhibition of endothelium- derived relaxing factor enhances myocardial stunning in conscious dogs. Circulation 88:2862–2871

    PubMed  CAS  Google Scholar 

  35. Schluter KD, Weber M, Schraven E, Piper HM (1994) NO donor SIN-1 protects against reoxygenation-induced cardiomyocyte injury by a dual action. Am J Physiol 267: H1461-H1466

    Google Scholar 

  36. Brutsaert DL, Andries LJ (1992) The endocardial endothelium. Am J Physiol 263: H985-H1002

    Google Scholar 

  37. Ramaciotti C, Sharkey A, McClellan G, Winegrad S (1992) Endothelial cells regulate cardiac contractility. Proc Natl Acad Sci 89:4033–4036

    Article  PubMed  CAS  Google Scholar 

  38. Shah AM, Lewis MJ (1993) Modulation of myocardial contraction by endocardial and coronary vascular endothelium. Trends Cardiovasc Med 3:98–103

    Article  PubMed  CAS  Google Scholar 

  39. Ramaciotti C, McClellan G, Sharkey A, Rose D, Wiseberg A, Winegrad S (1993) Cardiac endothelial cells modulate contractility of rat heart in response to oxygen tension and coronary flow. Circ Res 72:1044–1064

    PubMed  CAS  Google Scholar 

  40. Mebazaa A, Mayoux E, Maeda K, Lakatta EG, Robotham JL, Shah AM (1993) Paracrine effects of endocardial endothelial cells on myocyte contraction mediated via endothelin. Am J Physiol 265: H1841-H1846

    Google Scholar 

  41. McClellan G, Weisberg A, Rose D, Winegrad S (1994) Endothelial cell storage and release of endothelin as a cardioregulatory mechanism. Circ Res 70:787–803

    Google Scholar 

  42. Evans HG, Lewis MJ, Shah AM (1994) Modulation of myocardial relaxation by basal release of endothelin from endocardial endothelium. Cardiovasc Res 28:1694–1699

    Article  PubMed  CAS  Google Scholar 

  43. Shah AM, Mebazaa A, Wetzel RC, Lakatta EG (1994) Novel cardiac myofilament desensitizing factor released by endocardial and vascular endothelial cells. Circulation 89:2492–2497

    PubMed  CAS  Google Scholar 

  44. Shah AM, Mebazaa A, Cuda G, et al. (1994) Ca2+-independent inhibition of actomyo- sin crossbridge cycling in cardiac myocytes by endothelial cell factors in response to hypoxia. J Physiol 475.P: 80P (Abst)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shah, A.M. (1995). Influence of Nitric Oxide on Cardiac Systolic and Diastolic Function. In: Fink, M.P., Payen, D. (eds) Role of Nitric Oxide in Sepsis and ADRS. Update in Intensive Care and Emergency Medicine, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79920-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79920-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79922-8

  • Online ISBN: 978-3-642-79920-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics