Skip to main content

Nitric Oxide and the Heart in Sepsis

  • Chapter
Role of Nitric Oxide in Sepsis and ADRS

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 24))

Abstract

The physiologic and pathophysiologic roles of nitric oxide (NO), an endogenously produced molecule through which numerous local and systemic mediators produce their effects, is one of the most intensely studied fields of research in the health sciences today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weil MH, MacLean LD, Visscher MD, Spink W (1956) Studies on the circulatory changes in the dog produced by endotoxin from gram-negative microorganisms. J Clin Invest 35:1191–1198

    Article  PubMed  CAS  Google Scholar 

  2. Solis RT, Downing SE (1966) Effects of E. coli endotoxemia on ventricular performance. Am J Physiol 211:307–313

    PubMed  CAS  Google Scholar 

  3. Parker MM, Shelhamer JH, Bacharach SL, et al (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–490

    PubMed  CAS  Google Scholar 

  4. Sibbald WJ, Paterson NAM, Holliday RL, Anderson RA, Lobb TR, Duff JH (1978) Pulmonary hypertension in sepsis: Measurement by the pulmonary artery diastolic pulmonary wedge pressure gradient and the influence of passive and active factors. Chest 73:583–591

    Article  PubMed  CAS  Google Scholar 

  5. Peyton MD, Hinshaw LB, Greenfield LJ, Elkins RC (1976) The effects of coronary vasodilatation on cardiac performance during endotoxin shock. Surg Gynecol Obstet 143:533–538

    PubMed  CAS  Google Scholar 

  6. Wiggers CJ (1947) Myocardial depression in shock. A survery of cardiodynamic studies. Am Heart J 33:633–650

    Article  PubMed  CAS  Google Scholar 

  7. Lefer AM, Martin J (1970) Origin of myocardial depressant factor in shock. Am J Physiol 218:1423–1427

    PubMed  CAS  Google Scholar 

  8. Wangensteen SL, Geissenger WT, Lovett WL, Glenn TM, Lefer AM (1971) Relationship between splanchnic blood flow and a myocardial depressant factor in endotoxin shock. Surgery 69:410–418

    PubMed  CAS  Google Scholar 

  9. Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE (1986) The coronary circulation in human septic shock. Circulation 73:637–644

    Article  PubMed  CAS  Google Scholar 

  10. Dhainaut JF, Huyghebaert MF, Monsallier JF, et al (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75:533–541

    Article  PubMed  CAS  Google Scholar 

  11. Goldfarb RD, Nightingale LM, Kish P, Weber PB, Loegering DJ (1986) Left ventricular function during lethal and sublethal endotoxemia in swine. Am J Physiol 251:H364-H373

    Google Scholar 

  12. Lee K, van der Zee H, Dziuban SW Jr, Goldfarb RD (1988) Left ventricular function during chronic endotoxemia in swine. Am J Physiol 254:H324-H330

    Google Scholar 

  13. Hotchkiss RS, Karl IE (1992) Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 267:1503–1510

    Article  PubMed  CAS  Google Scholar 

  14. Solomon MA, Correa R, Alexander HR, et al (1994) Myocardial energy metabolism and morphology in a canine model of sepsis. Am J Physiol 266:H757-H768

    Google Scholar 

  15. Nishijima H, Weil MH, Shubin H, Cavanilles J (1973) Hemodynamic and metabolic studies on shock associated with gram-negative bacteremia. Medicine (Baltimore) 52:287–294

    Article  CAS  Google Scholar 

  16. Shoemaker WC (1971) Cardiorespiratory patterns in complicated and uncomplicated septic shock. Ann Surg 174:119–125

    Article  PubMed  CAS  Google Scholar 

  17. Lovett WL, Wangensteen SL, Glenn TM, Lefer AM (1971) Presence of a myocardial depressant factor in patients with circulatory shock. Surgery 70:223–231

    PubMed  CAS  Google Scholar 

  18. McConn R, Greineder JK, Wasserman F, Clowes GHA (1979) Is there a humoral factor that depresses ventricular function in sepsis? Circ Shock 1:9–22

    CAS  Google Scholar 

  19. Gomez A, Wang R, Unruh H, et al (1990) Hemofiltration reverses left ventricular dysfunction during sepsis in dogs. Anesthesiology 73:671–685

    Article  PubMed  CAS  Google Scholar 

  20. Jha P, Jacobs H, Bose D, et al (1993) Effects of E. coli sepsis and myocardial depressant factor on interval-force relations in dog ventricle. Am J Physiol 264:H1402-H1410

    Google Scholar 

  21. Harary I, Farley B (1960) In vitro studies of single isolated beating rat heart cells. Science 131:1674–1675

    Article  PubMed  CAS  Google Scholar 

  22. Carli A, Auclair MC, Vernimmen C, Jourdon P (1979) Reversal by calcium of rat heart cell dysfunction induced by human sera in septic shock. Circ Shock 6:147–157

    PubMed  CAS  Google Scholar 

  23. Benassayag C, Christeff N, Autclair MC, et al (1984) Early released lipid-soluble car- diodepressant factor and elevated oestrogenic substances in human septic shock. Eur J Clin Invest 14:288–294

    Article  PubMed  CAS  Google Scholar 

  24. Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W (1985) A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 76:1539–1553

    Article  PubMed  CAS  Google Scholar 

  25. Reilly JM, Cunnion RE, Burch-Whitman C, Parker MM, Shelhamer JH, Parrillo JE (1989) A circulating myocardial depressant substance is associated with cardiac dysfunction and peripheral hypoperfusion (lactic acidemia) in patients with septic shock. Chest 95:1072–1080

    Article  PubMed  CAS  Google Scholar 

  26. Suffredini AF, Fromm RE, Parker MM, et al (1989) The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 321:280–287

    Article  PubMed  CAS  Google Scholar 

  27. Danner RL, Elin RJ, Hosseini JM, Wesley RA, Reilly JM, Parrillo JE (1991) Endotoxemia in human septic shock. Chest 99:169–175

    Article  PubMed  CAS  Google Scholar 

  28. Parker JL, Adams HR (1979) Myocardial effects of endotoxin shock: Characterization of an isolated heart muscle model. Adv Shock Res 2:163–175

    PubMed  CAS  Google Scholar 

  29. Parker JL, Adams HR (1981) Contractile dysfunction of atrial myocardium from endotoxin-shocked pigs. Am J Physiol 240:H954-H962

    Google Scholar 

  30. Parker JL, Adams HR (1985) Development of myocardial dysfunction in endotoxin shock. Am J Physiol 248:H818-H826

    PubMed  CAS  Google Scholar 

  31. Kumar A, Kosuri R, Ginsburg B, et al (1994) Myocardial cell contractility is depressed by supernatants of endotoxin stimulated THP-1 cells. Crit Care Med 22:A118 (Abst)

    Article  Google Scholar 

  32. Kumar A, Kosuri R, Kandula P, et al (1994) Interleukin-1 beta but not endotoxin, interferon-gamma, or interleukin-6 depresses myocardial cell contractility in vitro. Clin Res 42:168A (Abst)

    CAS  Google Scholar 

  33. Balligand J, Ungureanu D, Kelly RA, et al (1993) Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 91:2314–2319

    Article  PubMed  CAS  Google Scholar 

  34. Gulick T, Chung MK, Pieper SJ, et al (1989) Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte adrenergic responsiveness. Proc Natl Acad Sci 86:6753–6757

    Article  PubMed  CAS  Google Scholar 

  35. Rees DD, Cellek S, Palmer RMJ, Moncada S (1990) Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: An insight into endotoxic shock. Biochem Biophys Res Commun 173:541–547

    Article  PubMed  CAS  Google Scholar 

  36. Julou-Schaeffer G, Gray GA, Fleming I, et al (1990) Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. Am J Physiol 259:H1038-H1043

    Google Scholar 

  37. McKenna TM, Reusch DW, Simpkins CO (1988) Macrophage conditioned medium and interleukin-1 suppress vascular contractility. Circ Shock 25:187–196

    PubMed  CAS  Google Scholar 

  38. Powrie F, Coffman RL (1993) Inhibition of cell-mediated immunity by IL-4 and IL IO. Res Immunol 144:639–643

    Article  PubMed  CAS  Google Scholar 

  39. Butcher EC (1991) Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity. Cell 67:1033–1039

    Article  PubMed  CAS  Google Scholar 

  40. Billiau A, Vandekerckhove F (1991) Cytokines and their interactions with other inflammatory mediators in the pathogenesis of sepsis and septic shock. Eur J Clin Invest 21:559–573

    Article  PubMed  CAS  Google Scholar 

  41. Van Zee K, DeForge LE, Fischer E, et al (1991) IL-8 in septic shock, endotoxemia, and after IL-1 administration. J Immunol 146:3478–3482

    PubMed  Google Scholar 

  42. Danner RL, Suffredini AF, Van Dervort AL, et al (1990) Detection of interleukin-6 (IL-6) and interleukin-8 (IL-8) during septic shock in humans. Clin Res 38:352A (Abst)

    Google Scholar 

  43. Moore KW, O’Garra A, de Waal Malefyr R, Vieira P, Mosmann TR (1993) Interleukin-10. Annu Rev Immunol 11:165–190

    Article  PubMed  CAS  Google Scholar 

  44. Albright JF, Oppenheim J J (1992) Contemporary topics in immunology: Approaches to immunotherapy emerging from basic research. FASEB J 6:2890–2894

    PubMed  CAS  Google Scholar 

  45. Le J, Vilcek J (1989) Interleukin-6: A multifunctional cytokine regulating immune reactions and the acute phase protein response. Laboratory Investigations 61:588–602

    CAS  Google Scholar 

  46. Heinrich PC, Castell JV, Andus T (1990) Interleukin-6 and the acute phase response. Biochem J 265:621–636

    PubMed  CAS  Google Scholar 

  47. Casey LC, Balk RA, Bone RC (1993) Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 119:771–778

    PubMed  CAS  Google Scholar 

  48. Waage A, Brandtzaeg P, Halstensen A, Kierulf P, Espevik T (1989) The complex pattern of cytokines in serum from patients with meningococcal septic shock. J Exp Med 169:333–338

    Article  PubMed  CAS  Google Scholar 

  49. Hack CE, De Groot ER, Felt-Bersma RJ, et al (1989) Increased plasma levels of interleukin-6 in sepsis. Blood 74:1704–1710

    PubMed  CAS  Google Scholar 

  50. Preiser JC, Schmartz D, Van der Linden P, et al (1991) Interleukin-6 administration has no acute hemodynamic or hematologic effect in the dog. Cytokine 3:1–4

    Article  PubMed  CAS  Google Scholar 

  51. Finkel MS, Oddis CV, Jacobs TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–389

    Article  PubMed  CAS  Google Scholar 

  52. Kinugawa K, Takahashi T, Kohmoto O, et al (1994) Nitric oxide-mediated effects of interleukin-6 on [Ca2 +]i and cell contraction in cultured chick ventricular myocytes. Circ Res 75:285–295

    PubMed  CAS  Google Scholar 

  53. Stolpen AH, Guinan EC, Fiers W, Pober JS (1986) Recombinant tumor necrosis factor and immune interferon act singly and in combination to re-organize human vascular endothelial cell monolayers. Am J Pathol 123:16–24

    PubMed  CAS  Google Scholar 

  54. Heremans H, Van Damme J, Dillen C, Dijkmans R, Billiau A (1990) Interferon gamma, a mediator of lethal lipopolysaccharide-induced Shwartzman-like reactions in mice. J Exp Med 171:1853–1869

    Article  PubMed  CAS  Google Scholar 

  55. Billiau A, Heremans H, Vanderkerckhove F, Dillen C (1987) Anti-interferon-gamma protects mice against the generalized Shwartzman reaction. Eur J Immunol 17:1851–1854

    Article  PubMed  CAS  Google Scholar 

  56. Silva AT, Cohen J (1992) Role of interferon-gamma in experimental gram-negative sepsis. J Infect Dis 166:331–335

    Article  PubMed  CAS  Google Scholar 

  57. Girardin E, Grau GE, Dayer JM, Roux-Lombard P, Lambert PH (1989) Plasma tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura. N Engl J Med 319:397–400

    Article  Google Scholar 

  58. Ognibene FP, Rosenberg SA, Lotze M, et al (1988) Interleukin-2 administration causes reversible hemodynamic changes and left ventricular dysfunction similar to those seen in septic shock. Chest 94:750–754

    Article  PubMed  CAS  Google Scholar 

  59. Gaynor ER, Vitek L, Sticklin L, et al (1988) The hemodynamic effects of treatment with interleukin-2 and lymphokine-activated killer cells. Ann Intern Med 109:953–958

    PubMed  CAS  Google Scholar 

  60. Pinsky MR, Vincent JL, Deviere J, Alegre M, Kahn RJ, Dupont E (1993) Serum cytokine levels in human septic shock: Relation to multiple system organ failure and mortality. Chest 103:565–575

    Article  PubMed  CAS  Google Scholar 

  61. Fong Y, Moldawer LL, Shires GT, Lowry SF (1994) The biologic characteristics of cytokines and their implication in surgical injury. Surg Gynecol Obstet 170:363–378

    Google Scholar 

  62. Sobotka PA, McMannis J, Fisher RI, Stein DG, Thomas JX (1990) Effects of interleukin-2 on cardiac function in the isolated rat heart. J Clin Invest 86:845–850

    Article  PubMed  CAS  Google Scholar 

  63. Weisensee D, Bereiter-Hahn J, Schoeppe W, Low-Friedrich I (1993) Effects of cytokines on the contractility of cultured cardiac myocytes. Int J Immunopharmacol 15:581–587

    Article  PubMed  CAS  Google Scholar 

  64. Natanson C, Fink MP, Ballantyne HK, MacVittie TJ, Conklin JJ, Parrillo JE (1986) Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock. J Clin Invest 78:259–270

    Article  PubMed  CAS  Google Scholar 

  65. Natanson C, Eichenholz PW, Danner RL, et al (1989) Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med 169:823–832

    Article  PubMed  CAS  Google Scholar 

  66. Michie HR, Manogue KR, Spriggs DR, et al (1988) Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318:1481–1486

    Article  PubMed  CAS  Google Scholar 

  67. Beutler B, Cerami A (1986) Cachectin and tumor necrosis factor as two sides of the same biological coin. Nature 320:584–586

    Article  PubMed  CAS  Google Scholar 

  68. Eichenholz PW, Eichacker PQ, Hoffman WD, et al (1992) Tumor necrosis factor challenges in canines: Patterns of cardiovascular dysfunction. Am J Physiol 263:H668-H675

    Google Scholar 

  69. Walley KR, Hebert PC, Wakai Y, Wilcox PG, Road JD, Cooper DJ (1994) Decrease in left ventricular contractility after tumor necrosis factor-alpha infusion in dogs. J Appl Physiol 76:1060–1067

    PubMed  CAS  Google Scholar 

  70. Beutler B, Milsark IW, Cerami A (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from the lethal effect of endotoxin. Science 229:869–871

    Article  PubMed  CAS  Google Scholar 

  71. Mathison JC, Wolfson E, Ulevitch RJ (1988) Participation of tumor necrosis factor in the mediation of gram-negative bacterial lipopolysaccharide-induced injury in rabbits. J Clin Invest 81:1925–1937

    Article  PubMed  CAS  Google Scholar 

  72. Tracey KJ, Fong Y, Hesse DG, et al (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature 330:662–664

    Article  PubMed  CAS  Google Scholar 

  73. Vincent JL, Bakker J, Marecaux G, Schandene L, Kahn RJ, Dupont E (1992) Administration of anti-TNF antibody improves left ventricular function in septic shock patients: Results of a pilot study. Chest 101:810–815

    Article  PubMed  CAS  Google Scholar 

  74. Wherry J, Wenzel R, Wunderink R, et al (1993) Monoclonal antibody to human tumor necrosis factor (TNF MAb): Multicenter efficacy and safety study in patients with the sepsis syndrome. Internat Conf Antimicrob Agents Chemother, Am Soc Microbiol 33:246 (Abst)

    Google Scholar 

  75. Wakabayashi G, Gelfand JA, Jung WK, Connolly RJ, Burke JF, Dinarello CA (1991) Staphylococcus epidermidis induces complement activation, tumor necrosis factor and interleukin-1, a shock-like state and tissue injury in rabbits without endotoxemia. Comparison to Escherichia coli. J Clin Invest 87:1925–1935

    Article  PubMed  CAS  Google Scholar 

  76. Hesse DG, Tracey KJ, Fong Y, et al (1988) Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet 166:147–153

    PubMed  CAS  Google Scholar 

  77. Okusawa S, Gelfand JA, Ikejima T, Connolly RJ, Dinarello CA (1988) Interleukin-1 induces a shock-like state in rabbits. J Clin Invest 81:1162–1172

    Article  PubMed  CAS  Google Scholar 

  78. Fisher CJ Jr, Dhainaut JF, Opal SM, et al (1994) Recombinant human interleukin-1 receptor antagonist in the treatment of patients with the sepsis syndrome: Results from a randomized, double-blind, placebo-controlled trial. JAMA 271:1836–1843

    Article  PubMed  Google Scholar 

  79. Ohlsson K, Bjork P, Bergenfeldt M, Hageman R, Thompson RC (1990) Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature 348:550–552

    Article  PubMed  CAS  Google Scholar 

  80. Fischer E, Marano MA, Van Zee KJ, et al (1992) Interleukin-1 receptor blockade improves survival and hemodynamic performance in Escherichia coli septic shock but fails to alter host responses to sublethal endotoxemia. J Clin Invest 89:1551–1557

    Article  PubMed  CAS  Google Scholar 

  81. Fisher CJ Jr, Slotner GJ, Opal SM, et al (1994) Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: A randomized, open-label, placebo-controlled multicenter trial. Crit Care Med 22:12–21

    PubMed  Google Scholar 

  82. Schuette WH, Burch C, Roach PO, Parrillo JE (1987) Closed loop television tracking of beating heart cells in vitro. Cytometry 8:101–103

    Article  PubMed  CAS  Google Scholar 

  83. Kumar A, Dimou C, Snell RJ, et al (1992) Tumor necrosis factor produces depression of myocardial cell contraction in vitro. Crit Care Med 20: S52 (Abst)

    Article  Google Scholar 

  84. Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL (1993) Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 92:2303–2312

    Article  PubMed  CAS  Google Scholar 

  85. Waage A, Espevik T (1988) Interleukin-1 potentiates the lethal effect of tumor necrosis factor alpha/cachectin in mice. J Exp Med 167:1987–1992

    Article  PubMed  CAS  Google Scholar 

  86. Weinberg JR, Boyle P, Meager A, Guz A (1992) Lipopolysaccharide, tumor necrosis factor, and interleukin-1 interact to cause hypotension. J Lab Clin Med 120:205–211

    PubMed  CAS  Google Scholar 

  87. Kumar A, Kosuri R, Kandula P, et al (1994) Human septic serum-induced in vitro cardiomyocyte depression is caused by the synergistic action of TNF-alpha and IL-1 beta. Clin Res 42:168A (Abst)

    CAS  Google Scholar 

  88. Kumar A, Brar R, Lakshminarayanan L, et al (1995) IL-1 beta but not endotoxin, IL-2, IL-4, IL-6, IL-8, IL-10, or interferon-gamma depresses myocardial cell contractility in vitro. Crit Care Med 23:A168 (Abst)

    Google Scholar 

  89. Kumar A, Kosuri R, Kandula P, et al (1995) Human septic serum induces depression of cardiac myocyte contractility through the synergistic actions of TNF-alpha and IL-1 beta. Crit Care Med 23:A262 (Abst)

    Google Scholar 

  90. Evans HG, Lewis MJ, Shah AM (1993) Interleukin-1 beta modulates myocardial contraction via dexamethasone sensitive production of nitric oxide. Cardiovasc Res 27:1486–1490

    Article  PubMed  CAS  Google Scholar 

  91. Hosenpud JD, Campbell SM, Mendelson DJ (1989) Interleukin-1-induced myocardial depression in an isolated beating heart preparation. J Heart Transplant 8:460–464

    PubMed  CAS  Google Scholar 

  92. DeMeules JE, Pigula FA, Mueller M, Raymond SJ, Gamelli RL (1992) Tumor necrosis factor and cardiac function. J Trauma 32:686–692

    Article  Google Scholar 

  93. Vane JR, Anggard EE, Botting RM (1990) Regulatory functions of the vascular endothelium. N Engl J Med 323:27–36

    Article  PubMed  CAS  Google Scholar 

  94. Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064

    PubMed  CAS  Google Scholar 

  95. Lincoln TM, Cornwell TL (1991) Towards an understanding of the mechanism of action of cyclic AMP and cyclic GMP in smooth muscle relaxation. Blood Vessels 28:129–137

    PubMed  CAS  Google Scholar 

  96. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: Physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  97. Nawrath H (1977) Does cyclic GMP mediate the negative inotropic effect of acetylcholine in the heart? Nature 267:72–74

    Article  PubMed  CAS  Google Scholar 

  98. George WJ, Polson JB, O’Toole AG, Goldberg ND (1970) Elevation of guanosine 3,5-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci 66:398–403

    Article  PubMed  CAS  Google Scholar 

  99. Han X, Shimoni Y, Giles WR (1994) An obligatory role for nitric oxide in autonomic control of mammalian heart rate. J Physiol 476:309–314

    PubMed  CAS  Google Scholar 

  100. Levi RC, Alloatti G, Penna C, Gallo MP (1994) Guanylate-cyclase-mediated inhibition of cardiac ICa by carbachol and sodium nitroprusside. Pflugers Arch 426:419–426

    Article  PubMed  CAS  Google Scholar 

  101. Shah AM, Spurgeon HA, Sollott SJ, Talo A, Lakatta EG (1994) 8-bromo-cGMP reduces the myofilament response to Ca2 + in intact cardiac myocytes. Circ Res 74:970–978

    PubMed  CAS  Google Scholar 

  102. Levi RC, Alloatti G, Fischmeister R (1989) Cyclic GMP regulates Ca-channel current in guinea pig ventricular myocytes. Pflugers Arch 413:685–687

    Article  PubMed  CAS  Google Scholar 

  103. Tohse N, Sperelakis N (1991) cGMP inhibits the activity of single calcium channels in embryonic chick heart cells. Circ Res 69:352–361

    Google Scholar 

  104. Mery PF, Pavoine C, Belhassen L, Pecker F, Fischmeister R (1994) Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylate cyclase activation. J Biological Chem 268:26286–26295

    Google Scholar 

  105. Fischmeister R, Hartzell HC (1987) Cyclic guanosine 3’,5’ -monophosphate regulates the calcium current in single cells from frog ventricle. J Physiol 387:453–472

    PubMed  CAS  Google Scholar 

  106. Mery P, Lohmann SM, Walter U, Fischmeister R (1991) Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci 88:1197–1201

    Article  PubMed  CAS  Google Scholar 

  107. Fort S, Lewis MJ (1991) Regulation of myocardial contractile performance by sodium nitroprusside in the isolated perfused heart of the ferret. Br J Pharmacol 102:351P (Abst)

    Google Scholar 

  108. Brady AJ, Warren JB, Poole-Wilson PA, Williams TJ, Harding SE (1993) Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 265:H176-H182

    Google Scholar 

  109. Grocott-Mason R, Fort S, Lewis MJ, Shah AM (1994) Myocardial relaxant effect of exogenous nitric oxide in isolated ejecting hearts. Am J Physiol 266:H1699-H1705

    Google Scholar 

  110. Paulus WJ, Vantrimpont PJ, Shah AM (1994) Acute effects of nitric oxide on left ventricular relaxation and diastolic distensability in humans. Assessment by bicoronary sodium nitroprusside infusion. Circulation 89:2070–2078

    PubMed  CAS  Google Scholar 

  111. Balligand J, Kelly RA, Marsden PA, Smith TW, Michel T (1993) Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci 90:347–351

    Article  PubMed  CAS  Google Scholar 

  112. Schulz R, Nava E, Moncada S (1992) Induction and potential biological relevance of a Ca (2+)-independent nitric oxide synthase in the myocardium. Br J Pharmacol 105:575–580

    PubMed  CAS  Google Scholar 

  113. Smith J A, Radomski MW, Schulz R, Moncada S, Lewis MJ (1993) Porcine ventricular endocardial cells in culture express the inducible form of nitric oxide synthase. Br J Pharmacol 108:1107–1110

    PubMed  CAS  Google Scholar 

  114. De Belder AJ, Radomski MW, Why HJF, et al (1993) Nitric oxide synthase activities in the human myocardium. Lancet 341:84–85

    Article  PubMed  Google Scholar 

  115. Balligand J, Kelly RA, Smith TW, Michel T (1994) Identification of a constitutive isoform of NO synthase in adult rat cardiac myocytes. Circulation 90:I193 (Abst)

    Google Scholar 

  116. Ochoa JB, Udekwu AO, Billiar TR, et al (1991) Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg 214:621–626

    Article  PubMed  CAS  Google Scholar 

  117. Rosenberg RB, Broner CW, O’Dorisio MS (1994) Modulation of cyclic guanosine monophosphate production during Escherichia coli septic shock. Biochem Med Metab Biol 51:149–155

    Article  PubMed  CAS  Google Scholar 

  118. Salvemini D, Korbut R, Anggard E, Vane JR (1990) Immediate release of a nitric oxide-like factor from bovine aortic endothelial cells by Escherichia coli lipopolysaccharide. Proc Natl Acad Sci 87:2593–2597

    Article  PubMed  CAS  Google Scholar 

  119. Bernard C, Szekely B, Philip I, Wollman E, Payen D, Tedgui A (1992) Activated macrophages depress the contractility of rabbit carotids via a L-arginine/nitric oxide dependent effector mechanism. J Clin Invest 89:851–860

    Article  PubMed  CAS  Google Scholar 

  120. Kilbourn RG, Gross SS, Jubran A, et al (1990) N-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: Implications for the involvement of nitric oxide. Proc Natl Acad Sci USA 87:3629–3633

    Article  PubMed  CAS  Google Scholar 

  121. Busse R, Mulsch A (1990) Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS 275:87–90

    Article  CAS  Google Scholar 

  122. Radomski MW, Palmer RMJ, Moncada S (1990) Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci 87:10043–10047

    Article  PubMed  CAS  Google Scholar 

  123. French JF, Lambert LE, Dage RC (1991) Nitric oxide synthase inhibitors inhibit interleukin-1 beta-induced depression of vascular smooth muscle. J Pharm Exp Therap 259:260–262

    CAS  Google Scholar 

  124. Kilbourn RG, Griffith OW (1992) Overproduction of nitric oxide in cytokine-mediated and septic shock. J Natl Cancer Inst 84:827–831

    Article  PubMed  CAS  Google Scholar 

  125. Lorente JA, Landin L, Renes E, et al (1993) Role of nitric oxide in the hemodynamic changes of sepsis. Crit Care Med 21:759–767

    Article  PubMed  CAS  Google Scholar 

  126. Petros A, Bennett D, Vallance P (1991) Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet 383:1557–1558

    Article  Google Scholar 

  127. Hollenberg SM, Cunnion RE, Zimmerberg J (1993) Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to catecholamines in septic rats. Am J Physiol 33:H660-H663

    Google Scholar 

  128. Schneider F, Lutun P, Hasselmann M, Stoclet JC, Tempe JD (1992) Methylene blue increases systemic vascular resistance in human septic shock. Preliminary observations. Intensive Care Med 18:309–311

    Article  PubMed  CAS  Google Scholar 

  129. Petros A, Lamb G, Leone A, Moncada S, Bennett D, Vallance P (1994) Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res 28:34–39

    Article  PubMed  CAS  Google Scholar 

  130. Kumar A, Kosuri R, Thota V, et al (1993) Nitric oxide and cyclic GMP generation mediates human septic serum-induced in vitro cardiomyocyte depression. Chest 104:12S (Abst)

    Google Scholar 

  131. Kumar A, Kosuri R, Thota V, et al (1993) Tumor necrosis factor-induced myocardial cell depression is mediated by nitric oxide and cyclic GMP generation. Circulation 883:I617 (Abst)

    Google Scholar 

  132. Kumar A, Kosuri R, Kandula P, et al (1995) Interleukin-1-beta-induced myocardial cell depression is mediated by nitric oxide and cyclic GMP generation. Crit Care Med 23:A149 (Abst)

    Article  Google Scholar 

  133. Kumar A, Thota V, Kosuri R, et al (1995) Tumor necrosis factor impairs epinephrine stimulated cardiomyocyte contractility and cyclic AMP response through a nitric oxide-independent mechanism. Crit Care Med 23:A148 (Abst)

    Google Scholar 

  134. Brady AJ, Poole-Wilson PA, Harding SE, Warren JB (1992) Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 263:H1963-H1966

    Google Scholar 

  135. Shindo T, Ikeda U, Ohkawa F, et al (1994) Nitric oxide synthesis in rat cardiac myocytes and fibroblasts. Life Sci 55:1101–1108

    Article  PubMed  CAS  Google Scholar 

  136. Tsujino M, Hirata Y, Imai T, et al (1994) Induction of nitric oxide synthetase gene by interleukin-1 beta in cultured rat cardiocytes. Circulation 90:375–383

    PubMed  CAS  Google Scholar 

  137. Shen W, Xu X, Ochoa M, Zhao G, Wolin MS, Hintze TH (1994) Role of nitric oxide in regulation of oxygen consumption in conscious dogs. Circ Res 75:1086–1095

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kumar, A., Parrillo, J.E. (1995). Nitric Oxide and the Heart in Sepsis. In: Fink, M.P., Payen, D. (eds) Role of Nitric Oxide in Sepsis and ADRS. Update in Intensive Care and Emergency Medicine, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79920-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79920-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79922-8

  • Online ISBN: 978-3-642-79920-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics