Skip to main content

Inhaled Nitric Oxide: The Light and Shadow of a Therapeutic Breakthrough

  • Chapter
  • 57 Accesses

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 24))

Abstract

More than a decade ago, the existence of an extremely labile and potent endogenous vasodilator synthesized by the endothelium, termed endothelium-derived relaxing factor (EDRF), was established by Furchgott and Zawadzki [1]. The nature of EDRF since remained elusive until experimental results from several laboratories identified it as the free radical nitric oxide (NO) [2,3]. Because it has a single unpaired electron, NO is also considered to be a free radical [4]. Molecular targets of NO are diverse, including heme proteins, non-heme iron-sulfur enzymes, DNA, and reactive oxygen species such as superoxide anion [5, 6]. Depending on its nature, the target molecule can either be activated (e.g. the heme-protein soluble guanylate cyclase) or inhibited (e.g. the non-heme iron protein ferritin) as a result of reacting with NO. In vascular smooth muscle, the molecular target of NO is the soluble enzyme guanylate cyclase [7]. Stimulation of the latter by NO increases the level of the second messenger cyclic guanosine monophosphate (cGMP) within vascular smooth muscle, thereby causing vasorelaxation [8]. The biochemistry of NO synthesis is remarquably simple, as to the nature of its precursors. The nitrogen atom of NO is derived from the N-guanidino terminal of the amino acid, L-arginine, whereas the oxygen atom is provided by molecular oxygen [7]. NO is synthesized from these two precursors by a newly discovered family of enzymes, the NO synthases (NOS).The complementary DNA for various isoforms of the NOS family have been recently cloned, and their amino acid primary structure sequenced [9]. There are two major subgroups of NOS isoforms, the constitutive and the inducible one. Endothelial NOS are predominantly constitutive, and most certainly play a key role in the modulation of systemic [10] and pulmonary [11] vascular tone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  2. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    Article  PubMed  CAS  Google Scholar 

  3. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  4. Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redoxactivated forms. Science 258:1898–1902

    Article  PubMed  CAS  Google Scholar 

  5. Nathan CF (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051–3064

    PubMed  CAS  Google Scholar 

  6. Henry Y, Lepoivre M, Drapier JC, Ducrocq C, Boucher JL, Guissani A (1993) EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J 7:1124–1134

    PubMed  CAS  Google Scholar 

  7. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  8. Murad F (1986) Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 78:1–5

    Article  PubMed  CAS  Google Scholar 

  9. Forstermann U, Schmidt HH, Pollock JS, et al (1991) Isoforms of nitric oxide synthase: Characterization and purification from different cell types. Biochem Pharmacol 10: 1849–1857

    Article  Google Scholar 

  10. Moncada S, Higgs EA (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329: 2002–2012

    Article  PubMed  CAS  Google Scholar 

  11. Dinh-Xuan AT (1992) Endothelial modulation of pulmonary vascular tone. Eur Respir J 5:757–762

    PubMed  CAS  Google Scholar 

  12. Nathan CF, Hibbs JB Jr (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3:65–70

    Article  PubMed  CAS  Google Scholar 

  13. Petros A, Bennett D, Vallance P (1991) Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet 338:1557–1558

    Article  PubMed  CAS  Google Scholar 

  14. Dinh-Xuan AT, Higenbottam TW, Clelland CA, Pepke-Zaba J, Wells FC, Wallwork J (1990) Acetylcholine and adenosine diphosphate cause endothelium-dependent relaxation of isolated human pulmonary arteries. Eur Respir J 3:633–638

    PubMed  CAS  Google Scholar 

  15. Gustafsson LE, Leone AM, Persson MG, Wiklund NP, Moncada S (1991) Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun 181:852–857

    Article  PubMed  CAS  Google Scholar 

  16. Gamier P, Strambu I, Dessanges JF, et al. (1994) Endogenous nitric oxide in expired air increases on exercise and isocapnic hyperventilation in normal subjects. Am J Respir Crit Care Med 149: A778 (Abst)

    Google Scholar 

  17. Dinh-Xuan AT, Higenbottam TW, Clelland CA, et al. (1991) Impairment of endothelium-dependent pulmonary-artery relaxation in chronic obstructive lung disease. N Engl J Med 324:1539–1547

    Article  PubMed  CAS  Google Scholar 

  18. Liu SF, Crawley DE, Barnes PJ, Evans TW (1991) Endothelium-derived relaxing factor inhibits hypoxic pulmonary vasoconstriction in rats. Am Rev Respir Dis 143:32–37

    PubMed  CAS  Google Scholar 

  19. Adnot S, Raffestin B, Eddhahibi S, Braquet P, Chabrier PE (1991) Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia. J Clin Invest 87:155–162

    Article  PubMed  CAS  Google Scholar 

  20. Isaacson TC, Hampl V, Weir EK, Nelson DP, Archer SL (1994) Increased endothelium-derived NO in hypertensive pulmonary circulation of chronically hypoxic rats. J Appl Physiol 76:933–940

    PubMed  CAS  Google Scholar 

  21. Dinh-Xuan AT (1993) Disorders of endothelium-dependent relaxation in pulmonary disease. Circulation 87 (Suppl V): V81-V87

    Google Scholar 

  22. Martin W, Smith JA, White DG (1986) The mechanisms by which haemoglobin inhibits the relaxation of rabbit aorta induced by nitrovasodilators, nitric oxide or bovine retractor penis inhibitory factor. Br J Pharmacol 89:563–571

    PubMed  CAS  Google Scholar 

  23. Higenbottam TW, Pepke-Zaba J, Scott JP, Woolman P, Coutts C, Wallwork J (1988) Inhaled endothelium-derived relaxing factor in primary pulmonary hypertension. Am Rev Respir Dis 137 (Suppl): 107 (Abst)

    Google Scholar 

  24. Stamler JS, Jaraki O, Osborne J, et al (1992) Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA 89 -.7674–7677

    Google Scholar 

  25. Frostell CG, Fratacci MD, Wain JC Jr, Jones R, Zapol WM (1991) Inhaled nitric oxide: A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 83:2038–2047

    PubMed  CAS  Google Scholar 

  26. Roberts JD Jr, Polaner DM, Lang P, Zapol WM (1992) Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet 340:818–819

    Article  PubMed  CAS  Google Scholar 

  27. Kinsella JP, Neish SR, Shaffer E, Abman SH (1992) Low-dose inhalational nitric oxide in persistent pulmonaly hypertension of the newborn. Lancet 340:819–820

    Article  PubMed  CAS  Google Scholar 

  28. Roze JC, Storme L, Zupan V, Morville P, Dinh-Xuan AT, Mercier JC (1994) Echocardiographic investigation of inhaled nitric oxide in newborn babies with severe hypoxaemia. Lancet 344:303–305

    Article  PubMed  CAS  Google Scholar 

  29. Abman SH, Griebel JL, Parker DK, Schmidt JM, Swanton D, Kinsella JP (1994) Acute effects of inhaled nitric oxide in children with severe hypoxemic respiratory failure. J Pediatr 124:881–888

    Article  PubMed  CAS  Google Scholar 

  30. Pepke-Zaba J, Higenbottam TW, Dinh-Xuan AT, Stone D, Wallwork J (1991) Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet 338:1173–1174

    Article  PubMed  CAS  Google Scholar 

  31. Adnot S, Kouyoumdjian C, Defouilloy C, et al. (1993) Hemodynamic and gas exchange responses to infusion of acetylcholine and inhalation of nitric oxide in patients with chronic obstructive lung disease and pulmonary hypertension. Am Rev Respir Dis 148:310–316

    Article  PubMed  CAS  Google Scholar 

  32. Rossaint R, Falke K J, Lopez FA, Slama K, Pison U, Zapol WM (1993) Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 328:399–405

    Article  PubMed  CAS  Google Scholar 

  33. Gerlach H, Pappert D, Lewandowski K, Rossaint R, Falke KJ (1993) Long-term inhalation with evaluated low doses of nitric oxide for selective improvement of oxygenation in patients with adult respiratory distress syndrome. Intensive Care Med 19: 443–449

    Article  PubMed  CAS  Google Scholar 

  34. Gerlach H, Rossaint R, Pappert D, Falke KJ (1993) Time-course and dose-response of nitric oxide inhalation for systemic oxygenation and pulmonary hypertension in patients with adult respiratory distress syndrome. Eur J Clin Invest 23:499–502

    Article  PubMed  CAS  Google Scholar 

  35. Payen DM, Gatecel C, Guinard N (1993) Inhalation of low dose of nitric oxide and IV L-arginine in ARDS: Effect on pulmonary hemodynamic, gas exchange and NO metabolites. Am Rev Respir Dis 147 (suppl): A720 (Abst)

    Google Scholar 

  36. Bigatello LM, Hurford WE, Kacmarek RM, Roberts JD Jr, Zapol WM (1994) Prolonged inhalation of low concentrations of nitric oxide in patients with severe adult respiratory distress syndrome. Anesthesiology 80:761–770

    Article  PubMed  CAS  Google Scholar 

  37. Puybasset L, Rouby JJ, Mourgeon E, et al (1994) Inhaled nitric oxide in acute respiratory failure: Dose-response curves. Intensive Care Med 20:319–327

    Article  PubMed  CAS  Google Scholar 

  38. Puybasset L, Rouby J J, Mourgeon E, et al (1994) Inhaled nitric oxide reverses the increase in pulmonary vascular resistance induced by permissive hypercapnia in patients with acute respiratory distress syndrome. Anesthesiology 80:1254–1267

    Article  PubMed  CAS  Google Scholar 

  39. Levy B, Bollaert PE, Bauer P, et al (1994) Early use of inhaled nitric oxide associated with therapeutic optimization in severe adult respiratory distress syndrome. Am J Respir Crit Care Med 149 (suppl): A425 (Abst)

    Google Scholar 

  40. Grover R, Smithies M, Bihari D (1993) A dose profile of the physiological effects of inhaled nitric oxode in acute lung injury. Am Rev Respir Dis 147 (suppl): A350 (Abst)

    Google Scholar 

  41. Wysocki M, Vignon P, Roupie E, et al (1993) Improvement in right ventricular function with inhaled nitric oxide in patients with the adult respiratory distress syndrome and permissive hypercapnia. Am Rev Respir Dis 147 (suppl): A350 (Abst)

    Google Scholar 

  42. Fierobe L, Brunet F, Dhainaut JF, et al (1995) Effect of inhaled nitric oxide on right ventricular function in adult respiratory distress syndrome. Am J Respir Crit Care Med 151 (In press)

    Google Scholar 

  43. Ricou B, Suter PM (1993) Variable effects of nitric oxide in ARDS patients. Am Rev Respir Dis 147 (suppl): A350 (Abst)

    Google Scholar 

  44. Mira JP, Monchi M, Brunet F, Fierobe L, Dhainaut JF, Dinh-Xuan AT (1994) Lack of efficacy of inhaled nitric oxide in ARDS. Intensive Care Med 20:532 (Letter)

    Google Scholar 

  45. Monchi M, Fierobe L, Mira JP, et al (1994) Predictive factors of inhaled nitric oxide inefficiency in ARDS patients. Am J Respir Crit Care Med 149 (suppl): A423 (Abst)

    Google Scholar 

  46. Roupie E, Wysocki M, Langeron O, et al (1994) Effects of inhaled nitric oxide on oxygenation and hemodynamic parameters in the acute respiratory distress syndrome: Responders versus non-responders. Am J Respir Crit Care Med 149 (suppl):A424 (Abst)

    Google Scholar 

  47. Payen DM, Gatecel C, Plaisance P (1993) Almitrine effect on nitric oxide inhalation in adult respiratory distress syndrome. Lancet 341:1664 (Letter)

    Google Scholar 

  48. Wysocki M, Delclaux C, Roupie E, et al (1994) Additive effects on gas exchange of inhaled nitric oxide and intravenous almitrine bimesylate in the adult respiratory distress syndrome. Intensive Care Med 20:254–259

    Article  PubMed  CAS  Google Scholar 

  49. Page Y, Bertrand M, Page D, et al (1994). Effects of inhaled nitric oxide in ARDS patients are variable and may be enhanced by almitrine. Am J Respir Crit Care Med 149 (suppl):A426 (Abst)

    Google Scholar 

  50. Walthers FJ, Benders M, Leighton JO (1992) Persistent pulmonary hypertension in premature neonates with severe respiratory distress syndrome. Pediatrics 90:899–904

    Google Scholar 

  51. Pison U, Lopez FA, Heidelmeyer CF, Rossaint R, Falke KJ (1993) Inhaled nitric oxide reverses hypoxic pulmonary vasoconstriction without impairing gas exchange. J Appl Physiol 74:1287–1292

    Article  PubMed  CAS  Google Scholar 

  52. Melot C, Naeije R, Rothschild T, Mertens P, Mols P, Hallemans R (1983) Improvement in ventilation-perfusion matching by almitrine in COPD. Chest 83:528–533

    Article  PubMed  CAS  Google Scholar 

  53. Walmrath D, Schneider T, Pilch J, Grimminger F, Seeger W (1993) Aerosolised prostacyclin in adult respiratory distress syndrome. Lancet 342:961–962

    Article  PubMed  CAS  Google Scholar 

  54. Högman M, Frosteil CG, Hedenström H, Hedenstierna G (1993) Inhalation of nitric oxide modulates adult human bronchial tone. Am Rev Respir Dis 148:1474–1478

    Article  PubMed  Google Scholar 

  55. Moinard J, Manier G, Pillet O, Castaing Y (1994) Effect of inhaled nitric oxide on hemodynamics and VA/Q inequalities in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 149:1482–1487

    PubMed  CAS  Google Scholar 

  56. Sibbald WJ, Driedger AA, Myers ML, Short AIK, Wells GA (1983) Biventricular function in the adult respiratory distress syndrome. Chest 84:126–134

    Article  PubMed  CAS  Google Scholar 

  57. Brunet F, Dhainaut JF, Devaux JY, Huyghebaert MF, Villemant D, Monsallier JF (1988) Right ventricular performance in patients with acute respiratory failure. Intensive Care Med 14:474–477

    Article  PubMed  Google Scholar 

  58. Zapol WM, Snider MT (1977) Pulmonary hypertension in severe acute respiratory failure. N Engl J Med 296:476–480

    Article  PubMed  CAS  Google Scholar 

  59. Radermacher P, Huet Y, Pluskwa F, et al (1988) Comparison of ketanserin and sodium nitroprusside in patients with severe ARDS. Anesthesioloy 68:152–157

    Article  CAS  Google Scholar 

  60. Bult H, de Meyer GRY, Jordaens F, Herman AG (1991) Chronic exposure to exogenous nitric oxide may suppress its endogenous release and efficacy. J Cardiovasc Pharmacol 17 (Suppl 3): S79-S82

    Article  CAS  Google Scholar 

  61. Rogers NE, Ignarro LJ (1992) Constitutive nitric oxide synthase from cerebellum is reversibly inhibited by nitric oxide formed from L-arginine. Biochem Biophys Res Commun 189:242–249

    Article  PubMed  CAS  Google Scholar 

  62. Buga GM, Griscavage JM, Rogers NE, Ignarro LJ (1993) Negative feedback regulation of endothelial cell function by nitric oxide. Circ Res 73:808–812

    PubMed  CAS  Google Scholar 

  63. Assreuy J, Cunha FQ, Liew FY, Moncada S (1993) Feedback Inhibition of nitric oxide synthase activity by nitric oxide. Br J Pharmacol 108:833–837

    PubMed  CAS  Google Scholar 

  64. Kiff RJ, Moss DW, Moncada S (1994) Effect of nitric oxide gas on the generation of nitric oxide by isolated blood vessels: Implications for inhalation therapy. Br J Pharmacol 113:496–498

    PubMed  CAS  Google Scholar 

  65. Zapol WM, Rimar S, Gillis N, Marietta M, Bosken CH (1994) Nitric oxide and the lung. Am J Respir Crit Care Med 149:1375–1380

    PubMed  CAS  Google Scholar 

  66. Quinn AC, Vallance P (1993) Inhaled nitric oxide — from pollutant to patent. Eur J Clin Invest 23:445–447

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dinh-Xuan, A.T., Brunet, F., Dhainaut, J.F. (1995). Inhaled Nitric Oxide: The Light and Shadow of a Therapeutic Breakthrough. In: Fink, M.P., Payen, D. (eds) Role of Nitric Oxide in Sepsis and ADRS. Update in Intensive Care and Emergency Medicine, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79920-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79920-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79922-8

  • Online ISBN: 978-3-642-79920-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics