Skip to main content

Pulmonary Vascular Regulation by Endogenous Nitric Oxide

  • Chapter
Book cover Role of Nitric Oxide in Sepsis and ADRS

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 24))

Abstract

Endothelial cells contribute to the control of vascular tone by releasing autocrine and paracrine substances that mediate contraction (endothelins, endothelium-derived contracting factor) or relaxation (nitric oxide, prostacyclin, endothelium-derived hyperpolarizing factor) of the vascular smooth muscle [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vane JR, Änggard KE, Botting RM (1990) Regulatory functions of the vascular endothelium. N Engl J Med 323:27–36

    Article  PubMed  CAS  Google Scholar 

  2. Moncada S, Higgs A (1991) The L-arginine-nitric oxide pathway. N Engl J Med 329: 2002–2011

    Google Scholar 

  3. Lowenstein CJ, Dinerman JL, Snyder SH (1994) Nitric oxide: A physiologic messenger. Ann Intern Med 120:227–237

    PubMed  CAS  Google Scholar 

  4. Furchgott FR, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 299:373–376

    Article  Google Scholar 

  5. Greenberg B, Rhoden K, Barnes BJ (1987) Endothelium-dependent relaxation of human pulmonary arteries. Am J Physiol 252: H434-H438

    PubMed  CAS  Google Scholar 

  6. Fineman JR, Chang R, Soifer SF (1991) L-arginine, a precursor of EDRF in vitro, produces pulmonary vasodilation in lambs. Am J Physiol 261: H1563-H1569

    PubMed  CAS  Google Scholar 

  7. Fineman JR, Heymann MA, Soifer SJ (1991) NG-nitro-L-arginine attenuates endo- thelium-dependent pulmonary vasodilation in lambs. Am J Physiol 260:H1299-H1306

    PubMed  CAS  Google Scholar 

  8. Fineman JR, Crowley MR, Heymann MA, Soifer SJ (1991) In vivo attenuation of endothelium-dependent pulmonary vasodilation by methylene blue. J Appl Physiol 71:735–741

    PubMed  CAS  Google Scholar 

  9. Hyman AL, Kadowitz RJ, Lippton HL (1989) Methylene blue selectively inhibits pulmonary vasodilator responses in cats. J Appl Physiol 66:1513–1517

    Article  PubMed  CAS  Google Scholar 

  10. McMahon TJ, Hood JS, Bellan JA, Kadowitz RJ (1991) NG-nitro-L-arginine methyl ester selectively inhibits pulmonary vasodilator responses to acetylcholine and brady- kinin. J Appl Physiol 71:2026–2031

    PubMed  CAS  Google Scholar 

  11. Isaacson TC, Hampl V, Weir EK, Nelson DP, Archer SL (1994) Increased endothe- lium-derived NO in hypertensive pulmonary circulation of chronically hypoxic rats. J Appl Physiol 76:933–940

    PubMed  CAS  Google Scholar 

  12. Archer SL, Tolins JP, Raij L, Weir EK (1989) Hypoxic pulmonary vasoconstriction is enhanced by inhibition of the synthesis of an endothelium-derived relaxing factor. Bio- chem Biophys Res Commun 164:1198–1205

    Article  CAS  Google Scholar 

  13. Archer SL, Rist K, Nelson DP, DeMaster EG, Cowan N, Weir EK (1990) Comparison of the hemodynamic effects of nitric oxide and endothelium-dependent vasodilators in intact lungs. J Appl Physiol 68:735–747

    PubMed  CAS  Google Scholar 

  14. Rodman DM, Yamaguchi T, Hasunuma K, O’Brien RF, McMurtry IF (1990) Effects of hypoxia on endothelium-dependent relaxation of rat pulmonary artery. Am J Physiol 258: L207-L214

    PubMed  CAS  Google Scholar 

  15. Wiklund NP, Persson MG, Gustafsson LE, Moncada S, Hedqvist P (1990) Modulatory role of endogenous nitric oxide in pulmonary circulation in vivo. Eur J Pharmacol 185:123–124

    Article  PubMed  CAS  Google Scholar 

  16. Perella MA, Edell ES, Krowka MJ, Cortese DA, Burnett JC Jr (1992) Endothelium- derived relaxing factor in pulmonary and renal circulations during hypoxia. Am J Physiol 263: R45-R50

    Google Scholar 

  17. Barnard JW, Wilson PS, Moore TM, Thompson WJ, Taylor AE (1993) Effect of nitric oxide and cyclooxygenase products on vascular resistance in dog and rat lungs. J Appl Physiol 74:2940–2948

    PubMed  CAS  Google Scholar 

  18. Hampl V, Archer SL, Nelson DP, Weir EK (1993) Chronic EDRF inhibition and hypoxia: Effects on pulmonary circulation and systemic blood pressure. J Appl Physiol 75:1748–1757

    PubMed  CAS  Google Scholar 

  19. Koizumi T, Gupta R, Banerjee M, Newman JH (1994) Changes in pulmonary vascular tone during exercise: Effects of nitric oxide synthase inhibition, L-arginine infusion and nitric oxide inhalation. J Clin Invest 94:2275–2282

    Article  PubMed  CAS  Google Scholar 

  20. Stamler JS, Loh E, Roddy MA, Currie KE, Creager MA (1994) Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation 89: 2035–2040

    PubMed  CAS  Google Scholar 

  21. Celermajer DS, Dollery C, Burch M, Deanfield JE (1994) Role of endothelium in the maintenance of low pulmonary vascular tone in normal children. Circulation 89: 2041–2044

    PubMed  CAS  Google Scholar 

  22. McGregor M, Sniderman A (1985) On pulmonary vascular resistance: The need for more precise definition. Am J Cardiol 55:217–221

    Article  PubMed  CAS  Google Scholar 

  23. Leeman M, Lejeune P, Closset J, Vachiery JL, Melot C, Naeije R (1990) Nature of pulmonary hypertension in canine oleic acid pulmonary edema. J Appl Physiol 69: 293–298

    PubMed  CAS  Google Scholar 

  24. Hakim TS (1994) Flow-induced release of EDRF in the pulmonary circulation: Site of release and action. Am J Physiol 267: H363-H369

    PubMed  CAS  Google Scholar 

  25. Brashers VL, Peach MJ, Rose CE (1988) Augmentation of hypoxic pulmonary vasoconstriction in the isolated perfused rat lung by in vitro antagonists of endothelium- dependent relaxation. J Clin Invest 82:1495–1502

    Article  PubMed  CAS  Google Scholar 

  26. Mazmanian GM, Baudet B, Brink C, Cerrina J, Kirkiacharian S, Weiss M (1989) Methylene blue potentiates vascular reactivity in isolated rat lung. J Appl Physiol 66: 1040–1045

    PubMed  CAS  Google Scholar 

  27. Hasunuma K, Yamaguehi T, Rodman DM, O’Brien RF, MeMurtry IF (1991) Effects of EDRF and EDHF on vasoreactivity of perfused rat lungs. Am J Physiol 260: L97-L104

    PubMed  CAS  Google Scholar 

  28. Liu S, Crawley DE, Barnes PJ, Evans TW (1991) Endothelium-derived relaxing factor inhibits hypoxic pulmonary vasoconstriction in rats. Am Rev Respir Dis 143:32–37

    PubMed  CAS  Google Scholar 

  29. Nishiwaki K, Nyhan DP, Rock P, et al (1992) NG-nitro-L-arginine and pulmonary vascular pressure-flow relationship in conscious dogs. Am J Physiol 262:H1131-H1137

    Google Scholar 

  30. Ogata M, Ohe M, Katayose D, Takishima T (1992) Modulatory role of EDRF in hypoxic contraction of isolated porcine pulmonary arteries. Am J Physiol 262: H691-H697

    PubMed  CAS  Google Scholar 

  31. Leeman M, Zegers de Beyl V, Delcroix M, Naeije R (1994) Effects of endogenous nitric oxide on pulmonary vascular tone in intact dogs. Am J Physiol 266: H2343-H2347

    PubMed  CAS  Google Scholar 

  32. Xue C, Rengasami A, Le Cras TD, Koberna PA, Dailey GC, Johns RA (1994) Distribution of NOS in normoxic vs. hypoxic rat lungs: Upregulation of NOS by chronic hypoxia. Am J Physiol 267: L667-L678

    PubMed  CAS  Google Scholar 

  33. Johns RA, Linden JM, Peach MJ (1989) Endothelium-dependent relaxation and cyclic GMP accumulation in rabbit pulmonary artery are selectively impaired by moderate hypoxia. Circ Res 65:1508–1515

    PubMed  CAS  Google Scholar 

  34. Hampl V, Cornfield DN, Cowan NJ, Archer SL (1995) Hypoxia potentiates NO synthesis and transiently increases cytosolic calcium levels in pulmonary endothelial cells. Eur Respir J 8:515–522

    PubMed  CAS  Google Scholar 

  35. Adnot S, Raffestin B, Eddahibi S, Braquet P, Chabrier PE (1991) Loss of endothelium- dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia. J Clin Invest 87:155–162

    Article  PubMed  CAS  Google Scholar 

  36. Eddahibi S, Adnot S, Carville C, Blouquit Y, Raffestin B (1992) L-arginine restores endothelium-dependent relaxation in pulmonary circulation of chronically hypoxic rats. Am J Physiol 263: L194-L200

    PubMed  CAS  Google Scholar 

  37. Dinh-Xuan AT, Higenbottam TW, Clelland CA, et al (1991) Impairment of endothelium-dependent pulmonary artery relaxation in chronic obstructive lung disease. N Engl J Med 324:1539–1547

    Article  PubMed  CAS  Google Scholar 

  38. Crawley DE, Zhao L, Giembycz MA, et al (1992) Chronic hypoxia impairs soluble guanylate cyclase-mediated pulmonary arterial relaxation in the rat. Am J Physiol 263: L325-L332

    PubMed  CAS  Google Scholar 

  39. Zhao L, Crawley DE, Hughes JMB, Evans TW, Winter RJD (1993) Endothelium- derived relaxing factor activity in rat lung during hypoxic pulmonary vascular remodeling. J Appl Physiol 74:1061–1065

    PubMed  CAS  Google Scholar 

  40. Maruyama J, Maruyama K (1994) Impaired nitric oxide-dependent responses and their recovery in hypertensive pulmonary arteries of rats. Am J Physiol 266: H2476-H2488

    PubMed  CAS  Google Scholar 

  41. Orton EC, Reeves JT, Stenmark KR (1988) Pulmonary vasodilation with stucturally altered pulmonary vessels and pulmonary hypertension. J Appl Physiol 65:2459–2467

    PubMed  CAS  Google Scholar 

  42. Russ RD, Walker BR (1993) Maintained endothelium-dependent pulmonary vasodilation following chronic hypoxia in the rat. J Appl Physiol 74:339–344

    PubMed  CAS  Google Scholar 

  43. Leeman M, Naeije R (1995) Nitric oxide and hypoxic pulmonary hypertension. Eur Respir J 8:513–514

    PubMed  CAS  Google Scholar 

  44. Feddersen CO, MeMurtry IF, Henson P, Voelkel NF (1986) Acetylcholine-induced pulmonary vasodilation in lung vascular injury. Am J Respir Dis 133:197–204

    CAS  Google Scholar 

  45. Coflesky JT, Evans JN (1988) Pharmacologic properties of isolated proximal pulmonary arteries after seven-day exposure to in vivo hyperoxia. Am J Respir Dis 138:945–951

    Article  CAS  Google Scholar 

  46. Ito K, Nakashima T, Murakami K, Murakami T (1988) Altered function of pulmonary endothelium following monocrotaline-induced vascular injury in rats. Br J Pharmacol 94:1175–1183

    PubMed  CAS  Google Scholar 

  47. Tracey WR, Hamilton JT, Craig ID, Paterson NAM (1989) Effect of endothelial injury on the responses of isolated guinea pig venules to reduced oxygen tension. Am J Respir Dis 140:68–74

    Article  CAS  Google Scholar 

  48. Chen X, Gillis CN (1991) Effects of free radicals on pulmonary vascular response to acetylcholine. J Appl Physiol 71:821–825

    PubMed  CAS  Google Scholar 

  49. Crawley DE, McCormack DG, Evans TW (1992) Bleomycin-induced acute lung injury in the rat does not influence pulmonary vascular responsiveness in vitro. Crit Care Med 20:641–644

    Article  PubMed  CAS  Google Scholar 

  50. Liu SF, Dewar A, Crawley DE, Barnes PJ, Evans TW (1992) Effect of tumor necrosis factor on hypoxic pulmonary vasoconstriction. J Appl Physiol 72:1044–1049

    PubMed  CAS  Google Scholar 

  51. Celermajer DS, Cullen S, Deanfield JE (1993) Impairement of endothelium-depen- dent pulmonary artery relaxation in children with congenital heart disease and abnormal pulmonary hemodynamics. Circulation 87:440–446

    PubMed  CAS  Google Scholar 

  52. Spath JA, Sloane PJ, Gee MH, Albertine KH (1994) Loss of endothelium-dependent vasodilation in the pulmonary vessels of sheep after prolonged endotoxin. J Appl Physiol 76:361–369

    PubMed  CAS  Google Scholar 

  53. Berisha HI, Pakbaz H, Absood A, Said SI (1994) Nitric oxide as a mediator of oxidant lung injury due to paraquat. Proc Natl Acad Sci USA 91:7445–7449

    Article  PubMed  CAS  Google Scholar 

  54. Leeman M, Zegers de Beyl D, Gilbert E, Melot C, Naeije R (1993) Is nitric oxide released in oleic acid lung injury? J Appl Physiol 74:650–654

    PubMed  CAS  Google Scholar 

  55. Kavanagh BP, Mouchawar A, Goldsmith J, Pearl RG (1994) Effects of inhaled NO and inhibition of endogenous NO synthesis in oxidant-induced acute lung injury. J Appl Physiol 76:1324–1329

    PubMed  CAS  Google Scholar 

  56. Zelenkov P, McLoughlin T, Johns RA (1993) Endotoxin enhances hypoxic constriction ot rat aorta and pulmonary artery through induction of EDRF/NO synthase. Am J Physiol 265: L346-L354

    PubMed  CAS  Google Scholar 

  57. Fox GA, Paterson NAM, McCormack DG (1994) Effect of inhibition of NO synthase on vascular reactivity in a rat model of hyperdynamic sepsis. Am J Physiol 267: H1377-H1382

    PubMed  CAS  Google Scholar 

  58. Leeman M, Delcroix M, Vachiéry JL, Mélot C, Naeije R (1992) Blunted hypoxic vasoconstriction in oleic acid lung injury: Effect of cyclooxygenase inhibitors. J Appl Physiol 72:251–258

    PubMed  CAS  Google Scholar 

  59. Yaghi A, Paterson NAM, McCormack DG (1993) Nitric oxide does not mediate the attenuated pulmonary vascular reactivity of chronic pneumonia. Am J Physiol 265: H943-H948

    PubMed  CAS  Google Scholar 

  60. Johnson D, Hurst T, Wilson T, et al (1993) NG-monomethyl-L-arginine does not restore loss of hypoxic pulmonary vasoconstriction induced by TNF-α. J Appl Physiol 75:618–625

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leeman, M. (1995). Pulmonary Vascular Regulation by Endogenous Nitric Oxide. In: Fink, M.P., Payen, D. (eds) Role of Nitric Oxide in Sepsis and ADRS. Update in Intensive Care and Emergency Medicine, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79920-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79920-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79922-8

  • Online ISBN: 978-3-642-79920-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics