Advertisement

Molecular Genetics and Oncogenes in Malignant Lymphomas

  • Paola Francia di Celle
  • Anna Carbone
  • Alessandro Cignetti
  • Gigliola Reato
  • Robin Foà
Conference paper
Part of the ESO Monographs book series (ESO MONOGRAPHS)

Abstract

The application of molecular technologies to the study of lymphoid cells has led to the characterization of several molecular events which are associated with the normal differentiation pathway (i.e., immunoglobulin (Ig) and T-cell receptor (TCR) chain gene rearrangements), and to the identification of genes that may be activated during the process of malignant lymphoid transformation (i.e., oncogenes and tumour suppressor genes). Ig and TCR studies may help in the definition of clonality and lineage affiliation, as well as in the detection of minimal residual disease. Oncogene deregulation promotes cell growth and/or rescues the tumour population from programmed cell death. Tumour suppressor gene inactivation contributes to the abnormal growth typical of neoplastic cells. These molecular lesions are characteristically associated with a defined type of lymphoid leukaemia or lymphoma and represent useful tumour markers for early diagnosis, for monitoring the course of the disease or for the detection of the transformation of lymphoid neoplasms. In this review, we will summarize the most important results obtained with the utilization of DNA analysis in the study of malignant lymphoid leukaemias and lymphomas. In addition to the important clinico-diagnostic implications, we will underline the contribution of these studies to our understanding of the biological mechanisms of lymphomagenesis.

Keywords

Chronic Lymphocytic Leukemia Minimal Residual Disease Gene Rearrangement Burkitt Lymphoma Lymphoid Neoplasm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alt FW, Blackwell TK, Yancopoulos GD: Development of the primary antibody repertoire. Science 1987 (38):1079–1087CrossRefGoogle Scholar
  2. 2.
    Davis MM and Bjorkman PJ: T-cell antigen receptor genes and T-cell recognition. Nature 1988 (334): 395–402PubMedCrossRefGoogle Scholar
  3. 3.
    Havran WL and Allison JP: Developmental ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature 1988 (335):443–445PubMedCrossRefGoogle Scholar
  4. 4.
    Waldmann TA: The arrangement of immunoglobulin and T-cell receptor genes in human lymphopro-liferative disorders. In: Dixon FJ (ed) Advances in Immunology. Academic Press, San Diego 1987 pp 247–321Google Scholar
  5. 5.
    Griesser H, Tkachuk D, Reis MD, Mak TW: Gene rearrangements and translocations in lymphopro-liferative diseases. Blood 1989 (73):1402–1415PubMedGoogle Scholar
  6. 6.
    Arnold A, Cossman J, Bakhshi A, Jaffe ES, Waldmann TA, Korsmeyer SJ: Immunoglobulin-gene rearrangements as unique clonal markers in human lymphoid neoplasms. N Engl J Med 1983 (309): 1593–1599PubMedCrossRefGoogle Scholar
  7. 7.
    Waldmann TA, Davis MM, Bongiovanni KF, Korsmeyer SJ: Rearrangements of genes for the antigen receptor on T cells as markers of lineage and clonality in human lymphoid neoplasms. N Engl JMed1985(313):776–783CrossRefGoogle Scholar
  8. 8.
    Korsmeyer SJ, Hieter PA, Ravetch JV, Poplack DG, Waldmann TA, Leder P: Developmental hierarchy of immunoglobulin gene rearrangements in human leukemic pre-B-cells. Proc Natl Acad Sci USA 1981 (78):7096–7100PubMedCrossRefGoogle Scholar
  9. 9.
    Foroni L, Foldi J, Matutes E, Catovsky D, O’Connor NJ, Baer R, Forster A, Rabbitts TH, Luzzatto L: a, ß and γ T-cell receptor genes: rearrangements correlate with haematological phenotype in T cell leukaemias. Br J Haematol 1987 (67):307–318PubMedCrossRefGoogle Scholar
  10. 10.
    Foroni L, Laffan M, Boehm T, Rabbitts TH, Catovsky D, Luzzatto L: Rearrangement of the T-cell receptor δ genes in human T-cell leukemias. Blood 1989 (73):559–566PubMedGoogle Scholar
  11. 11.
    Biondi A, Francia di Celle P, Rossi V, Casorati G, Matullo G, Giudici G, Foa R, Migone N: High prevalence of T-cell receptor Vδ2-(D)-Dδ3 or Dδ 1/2-Dδ3 rearrangements in B-precursor acute lymphoblastic leukemias. Blood 1990 (75):1834–1840PubMedGoogle Scholar
  12. 12.
    Callea V, Morabito F, Lista P et al: Multilineage cell involvement in Ph1-negative, bcr-negative chronic myeloid leukemia. Leuk Res 1988 (12):637–645PubMedCrossRefGoogle Scholar
  13. 13.
    Foa R, Pelicci PG, Migone N, Lauria F, Pizzolo G, Flug F, Knowles II DM, Dalla-Favera R: Analysis of T-cell receptor beta chain (Tß) gene rearrangements demonstrates the monoclonal nature of T-cell chronic lymphoproliferative disorders. Blood 1986 (67):247–250PubMedGoogle Scholar
  14. 14.
    Francia di Celle P, Migone N, Carbone A et al: Polyclonal nature of some granular T-cell expansions (CD3+, CD8+) based on the configuration of the T-cell receptor ß and γ chain gene regions. J Immunol Res 1990 (2): 144–150Google Scholar
  15. 15.
    Zehnbauer BA, Pardoll DM, Burke PJ, Graham ML, Vogelstein B: Immunoglobulin gene rearrangements in remission bone marrow specimens from patients with acute lymphoblastic leukemia. Blood 1986 (67):835–838PubMedGoogle Scholar
  16. 16.
    Brugiatelli M, Callea V, Morabito F et al: Immunological and molecular evaluation of residual disease in B-cell chronic lymphocytic leukemia patients in clinical remission phase. Cancer 1989 (63):1979–1984PubMedCrossRefGoogle Scholar
  17. 17.
    Wright JJ, Poplack DG, Bakhshi A et al: Gene rearrangements as markers of clonal variation and minimal residual disease in acute lymphoblastic leukemia. J Clin Oncol 1987 (5):735–741PubMedGoogle Scholar
  18. 18.
    Ciolli S, Leoni F, Caporale A et al: Mixed acute leukemia with genotypic lineage switch: a case report. Leukemia 1993 (7):1061–1065PubMedGoogle Scholar
  19. 19.
    Kerim S, Geuna M, Francia di Celle P et al: Heterogeneous immunoglobulin gene rearrangements in a B-chronic lymphocytic leukemia progressing into non-Hodgkin lymphoma (Richter syndrome). Cancer 1993 (71):359–363PubMedCrossRefGoogle Scholar
  20. 20.
    Kipps TJ, Tomhave E, Pratt LF, Duffy S, Chen PP, Carson DA: Developmental restricted immunoglobulin heavy chain variable region gene expressed at high frequency in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 1989 (86):5913–5917PubMedCrossRefGoogle Scholar
  21. 21.
    Saiki RK, Gelfand DH, Stoffel S et al: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988 (239): 487–494PubMedCrossRefGoogle Scholar
  22. 22.
    Negrin RS and Blume KG: The use of the polymerase chain reaction for the detection of minimal residual malignant disease. Blood 1991 (78):255–258PubMedGoogle Scholar
  23. 23.
    Deane M and Norton JD: Detection of immunoglobulin gene rearrangement in B cell neoplasias by polymerase chain reaction gene amplification. Leukemia and Lymphoma 1991 (5):9–22CrossRefGoogle Scholar
  24. 24.
    Leder P, Battey J, Lenoir G et al: Translocations among antibody genes in human cancer. Science 1983 (222):765–771PubMedCrossRefGoogle Scholar
  25. 25.
    Sawyers CL, Denny CT, Witte ON: Leukemia and the disruption of normal hematopoiesis. Cell 1991 (64): 337–350PubMedCrossRefGoogle Scholar
  26. 26.
    Lee M, Chang K, Cabanillas F, Freireich EJ, Trujillo JM, Stass SA: Detection of minimal residual cells carrying the t(14;18) by DNA sequence amplification. Science 1987 (237):175–178PubMedCrossRefGoogle Scholar
  27. 27.
    Dalla-Favera R, Bregni M, Erickson J, Patterson D, Gallo RC, Croce CM: Human c-myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 1982 (79):7824–7827PubMedCrossRefGoogle Scholar
  28. 28.
    Pelicci PG, Knowles DK, Magrath I, Dalla-Favera R: Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc Natl Acad Sci USA 1986(83):2984–2988PubMedCrossRefGoogle Scholar
  29. 29.
    Adams JM, Harris AW, Pinkert CA et al: The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 1985 (318): 533–538PubMedCrossRefGoogle Scholar
  30. 30.
    Lombardi L, Newcomb EW, Dalla-Favera R: Pathogenesis of Burkitt lymphoma: expression of an activated c-myc oncogene causes the tumorigenie conversion of EBV-infected human B lympho-blasts. Cell 1987 (49):161–170PubMedCrossRefGoogle Scholar
  31. 31.
    Tsujimoto Y, Cossman J, Croce CM: Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985 (228):1440–1443PubMedCrossRefGoogle Scholar
  32. 32.
    Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ: Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990 (348):334–336PubMedCrossRefGoogle Scholar
  33. 33.
    McDonnel TJ, Deane N, Platt FM et al: Bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphopro-liferation. Cell 1989 (57):79–88CrossRefGoogle Scholar
  34. 34.
    Fanidi A, Harrington EA, Evan Gl: Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 1992 (359):554–556PubMedCrossRefGoogle Scholar
  35. 35.
    Williams ME, Meeker TC, Swerdlow SH: Rearrangement of the chromosome 11 bcl-1 locus in centrocyte lymphoma: analysis with multiple breakpoint probes. Blood 1991 (78):493–498PubMedGoogle Scholar
  36. 36.
    Rosenberg CL, Wong E, Petty EM, Bale AE, Tsujimoto Y, Harris NL and Arnold A: PRAD1 , a candidate BCL-1 oncogene: mapping and expression in centrocytic lymphoma. Proc Natl Acad Sci USA 1991 (88):9638–9642PubMedCrossRefGoogle Scholar
  37. 37.
    Bastard C, Tilly H, Lenormand B et al: Translocations involving band 3q27 and Ig gene regions in non-Hodgkin’s lymphoma. Blood 1992 (79):2527–2531PubMedGoogle Scholar
  38. 38.
    Ye BH, Lista F, Lo Coco F et al: Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 1993 (262):747–749PubMedCrossRefGoogle Scholar
  39. 39.
    Marshall CJ: Tumor suppressor genes. Cell 1991 (64):313–326PubMedCrossRefGoogle Scholar
  40. 40.
    Benedict WF, Xu H-J, Hu S-X, Takahashi R: Role of the retinoblastoma gene in the initiation and progression of human cancer. J Clin Invest 1990 (85): 988–993PubMedCrossRefGoogle Scholar
  41. 41.
    Ginsberg AM, Raffeld M, Cossman J: Mutations of the retinoblastoma gene in human lymphoid neoplasms. Leukemia and Lymphoma 1992 (7):359–362PubMedCrossRefGoogle Scholar
  42. 42.
    Stilgenbauer S, Dohner H, Bulgay-Morschel M, Weitz S, Bentz M and Lichter P: High frequency of monoallelic retinoblastoma gene deletion in B-cell chronic lymphoid leukemia shown by interphase cytogenetics. Blood 1993 (81):2118–2124PubMedGoogle Scholar
  43. 43.
    Gaidano GL, Ballerini P, Gong JZ et al: p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA 1991 (88):5413–5417PubMedCrossRefGoogle Scholar
  44. 44.
    Lo Coco F, Gaidano GL, Louie DC, Offit K, Chaganti RSK and Dalla-Favera R: p53 mutations are associated with histologic transformation of follicular lymphoma. Blood 1993 (82):2289–2295PubMedGoogle Scholar
  45. 45.
    Karp JE and Broder S: Acquired immunodeficiency syndrome and non-Hodgkin’s lymphomas. Cancer Res 1991 (51):4743–4756PubMedGoogle Scholar
  46. 46.
    Pelicci PG, Knowles DM, Arlin ZA et al: Multiple monoclonal B cell expansions and c-myc oncogene rearrangements in acquired immune deficiency syndrome-related lymphoproliferative disorders. J Exp Med 1986 (164):2049–2076PubMedCrossRefGoogle Scholar
  47. 47.
    Haluska FG, Russo G, Kant J, Andreef M, Croce CM: Molecular resemblance of an AIDS-associated lymphoma and endemic Burkitt lymphomas: implications for their pathogenesis. Proc Natl Acad Sci USA 1989 (86):8907–8911PubMedCrossRefGoogle Scholar
  48. 48.
    Neri A, Barriga F, Inghirami G et al: Epstein-barr virus infection precedes clonal expansion in Burkitt’s and acquired immunodeficiency syndromeassociated lymphoma. Blood 1991 (77): 1092–1095PubMedGoogle Scholar
  49. 49.
    Ballerini P, Gaidano GL, Gong JZ et al: Multiple genetic lesions in acquired immunodeficiency syndrome-related non-Hodgkin’s lymphoma. Blood 1993 (81): 166–176PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Paola Francia di Celle
    • 1
  • Anna Carbone
    • 1
  • Alessandro Cignetti
    • 1
  • Gigliola Reato
    • 1
  • Robin Foà
    • 1
  1. 1.Dipartimento di Scienze Biomediche ed Oncologia Umana, Sezione Clinica, and Centro CNR “Immunogenetica ed Oncologia Sperimentale”University of TorinoTorinoItaly

Personalised recommendations