Skip to main content

Start-Specific Transcription in Yeast

  • Chapter
Transcriptional Control of Cell Growth

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 208))

Abstract

At the G1 to S transition of the budding yeast cell cycle there is burst of transcription of at least 30 different genes. This may in part be due to the fact that Saccheromyes cerevisiae often exists as a colonial micro-organism which spends most of its time in stationary phase (G0). When cells have the opportunity to enter the mitotic cell cycle, there is a selective advantage for cells that can start dividing rapidly and efficiently. Thus it is not surprising that they resynthesize enzymes critical for high-fidelity replication of DNA and replace other components that may not have survived extended G0 arrest. Proteins that are responsible for starting the cell cycle, particularly those that would disrupt the cycle if they were produced at other stages of the cell cycle, are transcribed specifically at the G1/S transition. Most of the G1 cyclins are expressed specifically at this time, and their activity determines the timing of the G1/S transition (Richardson et al. 1989; Nash et al. 1988; Cross 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JB, Zhou Z, Siede W, Friedberg EC, Elledge SJ (1994) The SAD1/RAD53 protein kinase controls multips checkpoints and DNA damage-induced transcription in yeast. Genes Dev 8: 2416–2428

    Article  Google Scholar 

  • Amon A, Tyers M, Futcher B, Nasmyth K (1993) Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74: 993–1007

    Article  PubMed  CAS  Google Scholar 

  • Andrews BJ, Herskowitz I (1989a) The yeast SWI4 protein contains a motif present in developmental regulators and is part of a complex involved in cell-cycle-dependent transcription. Nature 342: 830–833

    Article  PubMed  CAS  Google Scholar 

  • Andrews BJ, Herskowitz I (1989b) Identification of a DNA binding factor involved in cell-cycle control of the yeast HO gene. Cell 57: 21–29

    Article  PubMed  CAS  Google Scholar 

  • Andrews BJ, Moore L (1992a) Mutational analysis of a DNA sequence involved in linking gene expression to the cell cycle. Biochem Cell Biol 70: 1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Andrews BJ, Moore LA (1992b) Interaction of the yeast Swi4 and Swi6 cell cycle regulatory proteins in vitro. Proc Natl Acad Sci USA 89: 11852–11856

    Article  PubMed  CAS  Google Scholar 

  • Ayes SJ, Durkacz BW, Carr A, Nurse P (1985) Cloning, sequencing and transcriptional control of the Schizosaccharomyces pombe cdc10 start gene. EMBO J 4: 457–463

    Google Scholar 

  • Ayte J, Leis JF, Herrera A, Tang E, Yang H, DeCaprio JA (1995) The Schizosaccharomyces pombe MBF complex requires heterodimerization for entry into S phase. Mol Cell Biol

    Google Scholar 

  • Blackwell TK, Huang J, Ma A, Kretzner L, Alt FW, Eisenman RN, Weintraub H (1993) Binding of myc proteins to canonical and noncanonical DNA sequences. Mol Cell Biol 13: 5216–5224

    PubMed  CAS  Google Scholar 

  • Bork P (1993) Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally. Prot Struct Funct Genet 17: 363–374

    Article  CAS  Google Scholar 

  • Breeden L, Mikesell G (1991) Cell cycle-specific expression of the SWI4 transcription factor is required for the cell cycle regulation of HO transcription. Genes Dev 5: 1183–1190

    Article  PubMed  CAS  Google Scholar 

  • Breeden L, Mikesell G (1994) Three independent forms of regulation affect expression of HO, CLN1 and CLN2 during the cell cycle of Saccharomyces cerevisiae. Genetics 138: 1015–1024

    PubMed  CAS  Google Scholar 

  • Breeden L, Nasmyth K (1985) Regulation of the yeast HO gene. Cold Spring Harb Symp Quant Biol 50: 643–650

    PubMed  CAS  Google Scholar 

  • Breeden L, Nasmyth K (1987a) Cell cycle control of the yeast HO gene: cis-andtrans-acting regulators. Cell 48: 389–397

    Article  PubMed  CAS  Google Scholar 

  • Breeden L, Nasmyth K (1987b) Similarity between cell-cycle genes of budding yeast and fission yeast and the Notch gene of Drosophila. Nature 329: 651–654

    Article  PubMed  CAS  Google Scholar 

  • Bueno A, Russell P (1992) Dual functions of CDC6: a yeast protein required for DNA replication also inhibits nuclear division. EMBO J 11: 2167–2176

    PubMed  CAS  Google Scholar 

  • Caligiuri M, Beach D (1993) Sct1 functions in partnership with Cdc10 in a transcription complex that activates cell cycle START and inhibits differentiation. Cell 72: 607–619

    Article  PubMed  CAS  Google Scholar 

  • Cross FR (1988) DAF1,a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevisiae. Mol Cell Biol 8: 4675–4684

    PubMed  CAS  Google Scholar 

  • Cross FR, Tinkelenberg AH (1991) A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell 65: 875–883

    Article  PubMed  CAS  Google Scholar 

  • Cross FR, Hoek M, McKinney JD, Tinkelenberg AH (1994) Role of Swi4 in cell cycle regulation of CLN2 expression. Mol Cell Biol 14: 4779–4787

    PubMed  CAS  Google Scholar 

  • Dahmus ME (1994) On the role of C-terminal domain RNA polymerase II in the transcription of premRNA. In: Conaway RC, Conaway JW (eds) Transcription, mechanisms and regulation. Raven, New York, pp 243–262

    Google Scholar 

  • DeCaprio J, Furukawa Y, Ajchenbaum F, Griffin J, Livingston D (1992) The retinoblastoma-susceptibility gene product becomes phosphorylated in multiple stages during cell cycle entry and progression. Proc Natl Acad Sci USA 89: 1795–1798

    Article  PubMed  CAS  Google Scholar 

  • Dirick L, Nasmyth K (1991) Positive feedback in the activation of G1 cyclins in yeast. Nature 351: 754–757

    Article  PubMed  CAS  Google Scholar 

  • Dirick L, Moll T, Auer H, Nasmyth K (1992) A central role for SWIG in modulating cell cycle Start-specific transcription in yeast. Nature 357: 508–513

    Article  PubMed  CAS  Google Scholar 

  • Donovan JD, Toyn JH, Johnson AL, Johnson LH (1994) P40soeze a putative CDK inhibitor, has role in the M/G, transition in Saccharomyces cerevisiae. Genes Dev 8: 1640–1653

    Article  PubMed  CAS  Google Scholar 

  • Endicott JA, Nurse P, Johnson LN (1994) Mutational analysis supports a structural model for the cell cycle protein kinase p34, Prot Eng 7: 243–253

    Article  CAS  Google Scholar 

  • Epstein CB, Cross FR (1992) CLB5: a novel B cyclin from budding yeast with a role in S phase. Genes Dev 6: 1695–1706

    Article  PubMed  CAS  Google Scholar 

  • Espinoza FH, Ogas J, Herskowitz I, Morgan DO (1994) Cell cycle control by a complex of the cyclin HCS26 (PCL1) and the kinase PHO85. Science 266: 1388–1391

    Article  PubMed  CAS  Google Scholar 

  • Feaver WJ, Svejstrup JQ, Henry NL, Kornberg RD (1994) Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIIK. Cell 79: 1103–1109

    Article  PubMed  CAS  Google Scholar 

  • Fesquet D, Labbe J-C, Derancourt J, Capony J-P, Galas S, Girard F, lorca T, Shuttleworth J, Doree M, Cavadore J-C (1993) The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J 12: 3111–3121

    PubMed  CAS  Google Scholar 

  • Fitch I, Dahmann C, Surana U, Amon A, Nasmyth K, Goetsch L, Byers B, Futcher B (1992) Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 3: 805–818

    PubMed  CAS  Google Scholar 

  • Foster R, Mikesell GE, Breeden L (1993) Multiple Swi6-dependent cis-acting elements control SWI4 transcription through the cell cycle. Mol Cell Biol 13: 3792–3801

    PubMed  CAS  Google Scholar 

  • Ghiara J, Richardson H, Sugimoto K, Henze M, Lew D, Wittenberg C, Reed S (1991) A cyclin B homolog in S. cerevisiae: chronic activation of the Cdc28 protein kinase by cyclin prevents exit from mitosis. Cell 65: 163–174

    Article  PubMed  CAS  Google Scholar 

  • Gimeno CJ, Fink GR (1994) Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol 14: 2100–2112

    PubMed  CAS  Google Scholar 

  • Gordon CB, Camphell JL (1991) A cell cycle-responsive transcriptional control element and a negative control element in the gene encoding DNA polymerase a in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88: 6058–6062

    Article  PubMed  CAS  Google Scholar 

  • Haber JE, Garvik B (1977) A new gene affecting the efficiency of mating type interconversions in homothallic strains of S. cerevisiae. Genetics 87: 33–50

    PubMed  CAS  Google Scholar 

  • Hartwell LH (1976) Sequential function of gene products relative to DNA synthesis in the yeast cell cycle. J Mol Biol 104: 803–817

    Article  PubMed  CAS  Google Scholar 

  • Hiebert SW, Chellappan SP, Horowitz JM, Nevins JR (1992) The interaction of RB with E2F coincides with an inhibition of the transcriptional activity of E2F. Genes Dev 6: 177–185

    Article  PubMed  CAS  Google Scholar 

  • Hofmann JFX, Beach D (1994) cdt1 is an essential target of the Cdc10/Sct1 transcription factor: requirement for DNA replication and inhibition of mitosis. EMBO J 13: 425–434

    PubMed  CAS  Google Scholar 

  • Hunter T, Karin M (1992) The regulation of transcription by phosphorylation. Cell 70: 375–387

    Article  PubMed  CAS  Google Scholar 

  • Inoue, J, Kerr LD, Rashid D, Davis N, Bose HR Jr, Verma IM (1992) Direct association of pp40/kBb with Rel/NF-kB proteins: role of ankyrin repeats in the inhibition of DNA binding activity. Proc Natl Acad Sci USA 89: 4333–4337

    Article  PubMed  CAS  Google Scholar 

  • Ivey-Hoyle H, Conroy R, Huber H, Goodhart P, Oliff A, Heimbrook D (1993) Cloning and characterization of E2F, a novel protein with the biochemical properties of transcription factor E2F. Mol Cell Biol 13: 7802–7812

    PubMed  CAS  Google Scholar 

  • Johnston LH, Lowndes NF (1992) Cell cycle control of DNA synthesis in budding yeast. Nucleic Acids Res 20: 2403–2410

    Article  PubMed  CAS  Google Scholar 

  • Johnston LH, Thomas AP (1982) The isolation of new DNA synthesis mutants in the yeast Saccharomyces cerevisiae. Mol Gen Genet 186: 439–444

    Article  PubMed  CAS  Google Scholar 

  • Kaffman A, Herskowitz I, Tijan R, O’Shea EK (1994) Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80–PHO85. Science 263: 1153–1156

    Article  PubMed  CAS  Google Scholar 

  • Kelly TJ, Martin GS, Forsburg SL, Stephen RJ, Russo A, Nurse P (1993) The fission yeast cdc18’ gene product couples S phase to START and mitosis. Cell 74: 371–382

    Article  PubMed  CAS  Google Scholar 

  • Koch C, Moll T, Neuberg M, Ahorn H, Nasmyth K (1993) A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science 261: 1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Kostriken R, Strathern JN, Klar AJS, Hicks JB, Heffron F (1983) A site specific nuclease essential for mating type switching in S. cerevisiae. Cell 35: 167–174

    Article  PubMed  CAS  Google Scholar 

  • La Thangue NB (1994) DRTF1/E2F: an expanding family of heterodimeric transcription factors implicated in cell-cycle control. TIBS 19: 108–114

    PubMed  Google Scholar 

  • La Thangue NB, Taylor WR (1993) A structural similarity between mammalian and yeast transcription factors for cell-cycle-regulated genes. Trends Cell Biol 3: 75–76

    Article  PubMed  Google Scholar 

  • LaMarco K, Thompson CC, Byers BP, Walton EM, McKnight SL (1991) Identification of Ets-and notch-related subunits in GA binding protein. Science 253: 789–792

    Article  PubMed  CAS  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240: 1759–1764

    Article  PubMed  CAS  Google Scholar 

  • Lees J, Saito M, Vidal M, Valentine M, Look T, Harlow E, Dyson N, Helin K (1993) The retinoblastoma protein binds to a family of E2F transcription factors. Mol Cell Biol 13: 7813–7825

    PubMed  CAS  Google Scholar 

  • Lowndes NT, Johnson AL, Johnston LH (1991) Coordination of expression of DNA synthesis genes in budding yeast by a cell-cycle regulated trans factor. Nature 350: 247–248

    Article  PubMed  CAS  Google Scholar 

  • Lowndes NF, Mclnerny CJ, Johnson AL, Fantes PA, Johnston LH (1992a) Control of DNA synthesis genes in fission yeast by the cell-cycle gene cdc10’. Nature 355: 449–453

    Article  PubMed  CAS  Google Scholar 

  • Lowndes NF, Johnson AL, Breeden L, Johnston LH (1992b) SWI6 protein is required for transcription of the periodically expressed DNA synthesis genes in budding yeast. Nature 357: 505–508

    Article  PubMed  CAS  Google Scholar 

  • Marini NJ, Reed SI (1992) Direct induction of G,-specific transcripts following reactivation of the Cdc28 kinase in the absence of de novo protein synthesis. Genes Dev 6: 557–567

    Article  PubMed  CAS  Google Scholar 

  • Marks J, Fankhauser C, Reymond A, Simanis V (1993) Cytoskeletal and DNA structure abnormalities result from bypass of requirement for the cdc10 start gene in fission yeast Schizosaccharomyces pombe. J Cell Sci 101: 517–528

    Google Scholar 

  • McIntosh EM, Atkinson T, Storms RK, Smith M (1991) Characterization of a short, cis-acting DNA sequence which conveys cell cycle state-dependent transcription in Saccharomyces cerevisiae. Mol Cell Biol 11: 329–337

    PubMed  CAS  Google Scholar 

  • Mean AL, Slanksy JE, McMahon SL, Knuth MW, Farnham PJ (1992) The HIP binding site is required for growth regulation of the dihydrofolate reductase promoter. Mol Cell Biol 12: 1054–1063

    Google Scholar 

  • Measday V, Moore L, Ogas J, Tyers M, Andrews B (1994) The PCL2 (ORFD)-PH085 cyclin-dependent kinase complex: A cell cycle regulator in yeast. Science 266: 1391–1395

    Article  PubMed  CAS  Google Scholar 

  • Mendenhall MD (1993) An inhibitor of p34’ 28 protein kinase activity from Saccharomyces cerevisiae. Science 259: 216–219

    Article  PubMed  CAS  Google Scholar 

  • Mendenhall MD, Jones CA, Reed SI (1987) Dual regulation of the yeast CDC28-p40 protein kinase complex: Cell cycle, pheromone, and nutrient limitation effects. Cell 50: 927–935

    Article  PubMed  CAS  Google Scholar 

  • Merrill GF, Morgan BA, Lowndes NF, Johnston LH (1992) DNA synthesis control of yeast: an evolutionarily conserved mechasnism for regulating DNA synthesis genes? Bioessays 14: 823–830

    Article  PubMed  CAS  Google Scholar 

  • Miller KY, Toennis TM, Adams TH, Miller BL (1991) Isolation and transcriptional characterization of a morphological modifier: the Aspergillus niduIans stunted (stuA) gene. Mol Gen Genet 277: 285–292

    Google Scholar 

  • Miller KY, Wu J, Miller BL (1992) StuA is required for cell pattern formation in Aspergillus. Genes Dev 6: 1770–1782

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto M, Tanaka K, Okayama H (1994) Res2*, a new member of the cdc10*/SW14 family, controls the start of mitotic and meiotic cycle in fission yeast. EMBO J 13: 1873–1880

    PubMed  CAS  Google Scholar 

  • Moll T, Dirick L, Auer H, Bonkovsky J, Nasmyth K (1992) SWI6 is a regulatory subunit of two different cell cycle START-dependent transcription factors in Saccharomyces cerevisiae: J Cell Sci 16: 87–96

    CAS  Google Scholar 

  • Moreno S, Nurse P (1990) Substrates for p34cde2: In vivo veratis? Cell 61: 549–551

    Article  PubMed  CAS  Google Scholar 

  • Nash R, Tokiwa G, Anand S, Erickson K, Futcher AB (1988) The WHO gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J 7: 4335–4346

    PubMed  CAS  Google Scholar 

  • Nasmyth K (1983) Molecular analysis of cell lineage. Nature 302: 670–676

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K (1985a) At least 1400 base pairs of 5’ flanking DNA is required for the correct expression of the HO gene in yeast. Cell 42: 213–223

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K (1985b) A repetitive DNA sequence that confers cell cycle START (CDC28)-dependent transcription of the HO gene in yeast. Cell 42: 225–235

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K, Dirick L (1991) The role of SWI4 and SWI6 in the activity of G, cyclins in yeast. Cell 66: 995–1013

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K, Adolf G, Lydell D, Seddon A (1990) The identification of a second cell cycle control on the HO promoter in yeast: cell cycle regulation of SWI5 nuclear entry. Cell 62: 631–647

    Article  PubMed  CAS  Google Scholar 

  • Nurse P, Bissett Y (1981) Gene required in G, for commitment to the cell cycle and in G2 for control of mitosis in fission yeast. Nature 292: 558–560

    Article  PubMed  CAS  Google Scholar 

  • Nurse P, Thuriaux P, Nasmyth K (1976) Genetic control of the cell division cycle in the fission yeast S. pombe. Mol Gen Genet 146: 167–178

    Article  PubMed  CAS  Google Scholar 

  • Obara-Ishihara T, Okayama H (1994) A B-type cyclin negatively regulates conjugation via interacting with cell cycle ‘start’ genes in fission yeast. EMBO J 13: 1863–1872

    PubMed  CAS  Google Scholar 

  • Ogas J, Andrews BJ, Herskowitz I (1991) Transcriptional activation of CLN1, CLN2, and a putative new G, cyclin (HCS26) by SWI4, a positive regulator or G,-specific transcription. Cell 66: 1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Ord RW, McIntosh EM, Lee L, Poon PP, Storms RK (1988) Multiple elements regulate expression of the cell cycle-regulated thymidylate synthase gene of Saccharomyces cerevisiae. Curr Genet 14: 363–373

    Article  CAS  Google Scholar 

  • Partridge J, Breeden L (to be published) Multiple regulatory elements control CLN1 transcription during the cell cycle. EMBO J

    Google Scholar 

  • Peter M, Herskowitz I (1994) Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Farl.Science 265: 1228–1231

    Article  PubMed  CAS  Google Scholar 

  • Poon RYC, Yamashita K, Adamczewski JP, Hunt T, Shuttleworth J (1993) The cdc2-related protein p40MO’e is the catalytic subunit of a protein kinase that can activate p33edkz and p34ode2 EMBO J 12: 3123–3132

    PubMed  CAS  Google Scholar 

  • Primig M, Sockanathan S, Auer H, Nasmyth K (1992) Anatomy of a transcription factor important for the Start of the cell cycle in Saccharomyces cerevisiae. Nature 358: 593–597

    Article  PubMed  CAS  Google Scholar 

  • Reid B, Hartwell LH (1977) Regulation of mating in the cell cycle of Saccharomyces cerevisiae. J Cell Biol 75: 355–365

    Article  PubMed  CAS  Google Scholar 

  • Reymond A, Schmidt S, Simanis V (1992) Mutations in the cdc10 start gene of Schizosaccharomyces pombe implicate the region of homology between cdc10 and SWIG as important for p85caC0 function. Mol Gen Genet 234: 449–456

    Article  PubMed  CAS  Google Scholar 

  • Reymond A, Marks J, Simanis V (1993) The activity of S. pombe DSC-1-like factor is cell cycle regulated and dependent on the activity of p34ctic2 EMBO J 12: 4325–4334

    PubMed  CAS  Google Scholar 

  • Richardson H, Lew DJ, Henze M, Sugimoto K, Reed SI (1992) Cyclin-B homologs in S. cerevisiae function in S phase and in G2. Genes 6: 2021–2034

    Article  CAS  Google Scholar 

  • Richardson HE, Wittenberg C, Cross F, Reed SI (1989) An essential G, function for cyclin-like proteins in yeast. Cell 59: 1127–1133

    Article  PubMed  CAS  Google Scholar 

  • Roy R, Adamczewski JP, Seroz T, Vermeulen W, Tassan J-P, Schaeffer L, Nigg EA, Hoeijmakers JHJ, Egly J-M (1994) The M015 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79: 1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Schwob E, Nasmyth K (1993) CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev 7: 1160–1175

    Article  PubMed  CAS  Google Scholar 

  • Schwob E, Bohm T, Mendenhall MD, Nasmyth K (1994) The B-type cyclin kinase inhibitor p40sIc’ controls the G, to S transition in S. cerevisiae. Cell 79: 233–244

    Article  PubMed  CAS  Google Scholar 

  • Shan B, Zhu, X, Chen P, Durfee T, Yang Y, Sharp D, Lee W (1992) Molecular cloning of cellular genes encoding retinoblastoma-associated proteins: identification of a gene with properties of the transcription factor E2F. Mol Cell Biol 12: 5620–5631

    PubMed  CAS  Google Scholar 

  • Sidorova J, Breeden L (1993) Analysis of the SWI4/SWI6 protein complex, which directs G,/S-specific transcription in Saccharomyces cerevisiae: Mol Cell Biol 13: 1069–1077

    PubMed  CAS  Google Scholar 

  • Sidorova J, Breeden L (to be published) Phosphorylation of SwiS controls its nuclear localization but doesn’t affect cell cycle regulated transcription. Mol Biol Cell

    Google Scholar 

  • Simanis V, Nurse P (1989) Characterization of the fission yest cdc10` protein that is required for commitment to the cell cycle. J Cell Sci 92: 51–56

    PubMed  CAS  Google Scholar 

  • Simon M, Seraphin B, Gerard F (1986)KIN28, a yeast gene coding for a putative protein kinase homologous to CDC28. EMBO J 5: 2697–2701

    PubMed  CAS  Google Scholar 

  • Sipiczki M (1989) Taxonomy and phylogenesis. In: Nasim A, Johnson, BF, Young P (eds) Molecular biology of the fission yeast. Academic, New York, pp 431–452

    Google Scholar 

  • Stern M, Jenson R, Herskowitz 1 (1984) Five SW1 genes are required for expression of the HO gene in yeast. J Mol Biol 178: 853–868

    CAS  Google Scholar 

  • Strathern JN, Herskowitz I (1979) Assymetry and directionality in production of new cell types during clonal growth: the switching pattern of homothallic yeast. Cell 17: 371–381

    Article  PubMed  CAS  Google Scholar 

  • Stuart D, Wittenberg C (1994) Cell cycle-dependent transcription of CLN2 is conferred by multiple distinct cis-acting regulatory elements. Mol Cell Biol 14: 4788–4801

    PubMed  CAS  Google Scholar 

  • Taba MRM, Muroff I, Lydell D, Tebb G, Nasmyth K (1991) Changes in a SWI4, 6-DNA-binding complex occur at the time of HO gene activation in yeast. Genes Dev 5: 2000–2013

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Okazaki K, Okazaki N, Ueda T, Sugiyama A, Nojima H, Okayama H (1992) A new cdc gene required for S phase entry of Schizosaccharomyces pombe encodes a protein similar to the cdc10’ and SWI4 gene products. EMBO J 11: 4923–4932

    PubMed  CAS  Google Scholar 

  • Tyers M, Tokiwa G, Futcher B (1993) Comparison of the Saccharomyces cerevisiae G, cyclins: CIn3 may be an upstream activator of CIn1, CIn2 and other cyclins. EMBO J 12: 1955–1968

    PubMed  CAS  Google Scholar 

  • Valay JG, Simon M, Faye G (1993) The Kin28 protein kinase is associated with a cyclin in Saccharo-myces cerevisiae. J Mol Biol 234: 307–310

    Article  CAS  Google Scholar 

  • Ward MP, Garrett S (1994) Suppression of a yeast cyclic AMP-dependent protein kinase defect by overexpression of SOK1, a yeast gene exhibiting sequence similarity to a developmentally regulated mouse gene. Mol Cell Biol 14: 5619–5627

    PubMed  CAS  Google Scholar 

  • Weinert TA, Kiser GL, Hartwell LH (1994) Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 8: 652–665

    Article  PubMed  CAS  Google Scholar 

  • White JHM, Green SR, Barker DG, Dumas LB, Johnston LH (1987) The CDC8 transcript is cell cycle regulated in yeast and is expressed with CDC9 and CDC21 at a point preceding histone transcription. Exp Cell Res 171: 223–231

    Article  PubMed  CAS  Google Scholar 

  • Wittenberg C, Sugimoto K, Reed SI (1990) G,-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34coc28 protein kinase. Cell 62: 225–237

    Article  PubMed  CAS  Google Scholar 

  • Zheng P, Fay DS, Burton J, Xiao H, Pinkham JL, Stern DF (1993) SPK1 is an essential S-phase-specific gene of Saccharomyces cerevisiae that encodes a nuclear serine/threonine/tyrosione kinase. Mol Cell Biol 13: 5829–5842

    CAS  Google Scholar 

  • Zhou C, Jong AY (1993) Mutation analysis of Saccharomyces cerevisiae CDC6 promoter: defining its UAS domain and cell cycle regulating element. DNA Cell Biol 4: 363–370

    Article  Google Scholar 

  • Zhu Y, Takeda T, Nasmyth K, Jones N (1994) pct1*, which encodes a new DNA-binding partner of p85PcdC0 is required for meiosis in the fission yeast Schizosaccharomyces pombe. Genes Dev 8: 885–898

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Breeden, L. (1996). Start-Specific Transcription in Yeast. In: Farnham, P.J. (eds) Transcriptional Control of Cell Growth. Current Topics in Microbiology and Immunology, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79910-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79910-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79912-9

  • Online ISBN: 978-3-642-79910-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics