Skip to main content

Use of the E2F Transcription Factor by DNA Tumor Virus Regulatory Proteins

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 208))

Abstract

In most cases the normal host cell for infection by the DNA tumor virus is a quiescent, terminally differentiated cell that is not dividing. Various experiments have demonstrated that upon infection these cells are stimulated to enter S phase, as indicated by the synthesis of cellular DNA and the induction of activities associated with DNA replication, particularly those enzymes involved in deoxynucleotide biosynthesis (Hatanaka and Dulbecco 1966; Ledinko 1968; Yamashita and Shimojo 1969; Dulbecco et al. 1965; Frearson et al. 1965, 1966; Hartwell et al. 1965; Kara and Weil 1967; Kit et al. 1966a, b, 1967a, b; Sheinin 1966). This viral-mediated S phase induction almost certainly reflects the need of these viruses to create an environment appropriate for viral DNA synthesis since the levels of deoxynucleotides are low in quiescent cells and normally rise only when cells are stimulated to enter S phase (Bjorklund et al. 1990; Engstrom et al. 1985). Thus, the normal host for infection by these viruses, a nongrowing cell, is not an environment conducive to DNA replication. The capacity of the DNA tumor viruses to drive a quiescent cell into S phase is dependent largely on the action of the viral regulatory proteins that include adenovirus E1A, SV40 T antigen, and human papillomavirus (HPV) E7. These are also viral proteins that possess oncogenic activity through their common ability to inactivate the retinoblastoma gene product Rb. Indeed, it is now clear that the ability of these viral proteins to promote entry into S phase, so as to create an environment that facilitates viral DNA replication, also results in a loss of cell growth control when a viral infection cannot proceed to completion. Recent developments have led to the realization that these viral proteins mediate these events through the activation of the E2F transcription factor, and studies of their interactions have provided considerable insight into the basic mechanisms of cell growth control and oncogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht JC, Nicholas J, Biller D, Cameron KR, Biesinger B, Newman C, Wittmann S, Craxton MA, Coleman H, Fleckenstein B. et al. (1992) Primary structure of the herpesvirus saimiri genome. J Virol 66: 5047–5058

    PubMed  CAS  Google Scholar 

  • Bagchi S, Raychaudhuri P, Nevins JR (1990) Adenovirus E1A proteins can dissociate heteromeric complexes involving the E2F transcription factor: a novel mechanism for E1A trans-activation. Cell 62: 659–669

    PubMed  CAS  Google Scholar 

  • Bagchi S, Weinmann R, Raychaudhuri P (1991) The retinoblastoma protein copurifies with E2F-I, an E1A-regulated inhibitor of the transcription factor E2F. Cell 65: 1063–1072

    PubMed  CAS  Google Scholar 

  • Bandara LR, La Thangue NB (1991) Adenovirus El a prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature 351: 494–497

    PubMed  CAS  Google Scholar 

  • Bandara LR, Adamczewski JP, Hunt T, La Thangue NB (1990) Cyclin A and the retinoblastoma gene product complex with a common transcription factor. Nature 352: 249–251

    Google Scholar 

  • Bandara LR, Lam EW-F, Sorensen TS, Zamanian M, Girling R, La Thangue NB (1994) DP-1: a cell cycle-regulated and phosphorylated component of transcription factor DRTF1/E2F which is functionally important for recognition by pRb and the adenovirus E4 orf 6/7 protein. EMBO 13: 3104–3114

    CAS  Google Scholar 

  • Bjorklund S, Skog S, Tribukait B, Thelander L (1990) S-phase-specific expression of mammalian ribonucleotide reductase R1 and R2 subunit mRNAs. Biochemistry 29: 5452–5458

    PubMed  CAS  Google Scholar 

  • Cao L, Faha B, Dembski M, Tsai LH, Harlow E, Dyson N (1992) Independent binding of the retino-blastoma protein and p107 to the transcription factor E2F. Nature 355: 176–179

    PubMed  CAS  Google Scholar 

  • Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR (1991) The E2F transcription factor is a cellular target for the RB protein. Cell 65: 1053–1061

    PubMed  CAS  Google Scholar 

  • Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC, Nevins JR (1992) Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad Sci USA 89: 4549–4553

    PubMed  CAS  Google Scholar 

  • Chittenden T, Livingston DM, Kaelin WG Jr (1991) The T/E1A-binding domain of the retino-blastoma product can interact selectively with a sequence-specific DNA-binding protein. Cell 65: 1073–1082

    PubMed  CAS  Google Scholar 

  • Corbeil HB, Branton PE (1994) Functional importance of complex formation between the retino-blastoma tumor suppressor family and adenovirus E1A proteins as determined by mutational analysis of E1A conserved region 2. J Virol 68: 6697–6709

    PubMed  CAS  Google Scholar 

  • Cress WD, Nevins JR (1994) Interacting domains of E2F1, DP1, and the adenovirus E4 protein. J Virol 68: 4212–4219

    CAS  Google Scholar 

  • Cress WD, Johnson DG, Nevins JR (1993) A genetic analysis of the E2F1 gene distinguishes regulation by Rb, p107, and adenovirus E4. Mol Cell Biol 13: 6314–6325

    PubMed  CAS  Google Scholar 

  • Dalton S (1992) Cell cycle regulation of the human cdc2 gene. EMBO J 11: 1797–1804

    PubMed  CAS  Google Scholar 

  • DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsilio E, Paucha E, Livingston DM (1988) SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54: 275–283

    PubMed  CAS  Google Scholar 

  • Defeo-Jones D, Huang PS, Jones RE, Haskell KM, Vuocolo GA, Hanobik MG, Huber HE, Oliff A (1991) Cloning of cDNAs for cellular proteins that bind to the retinoblastoma gene product. Nature 352: 251–254

    PubMed  CAS  Google Scholar 

  • DeGregori J, Kowalik T, Nevins JR (1995) Cellular targets for activation by the E2F1 transcription factor include DNA synthesis and G,/S regulatory genes. Mol Cell Biol 15: 4215–4224

    PubMed  CAS  Google Scholar 

  • Devoto SH, Mudryj M, Pines J, Hunter T, Nevins JR (1992) A cyclin A-protein kinase complex possesses sequence-specific DNA binding activity: p33cdk2 is a component of the E2F-cylin A complex. Cell 68: 167–176

    PubMed  CAS  Google Scholar 

  • Dowdy SF, Hinds PW, Louie K, Reed SK, Arnold A, Weinberg RA (1993) Physical interaction of the retinoblastoma protein with human D cyclins. Cell 73: 499–511

    PubMed  CAS  Google Scholar 

  • Dulbecco R, Hartwell LH, Vogt M (1965) Induction of cellular DNA synthesis by polyoma virus. Proc Natl Acad Sci USA 53: 403

    PubMed  CAS  Google Scholar 

  • Dyson N, Howley PM, Munger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934–937

    PubMed  CAS  Google Scholar 

  • Dyson N, Guida P, McCall C, Harlow E (1992) Adenovirus E1A makes two distinct contacts with the retinoblastoma protein. J Virol 66: 4606–4611

    PubMed  CAS  Google Scholar 

  • Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, Livingston DM (1994) Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev 8: 869–884

    PubMed  CAS  Google Scholar 

  • Engstrom Y, Eriksson S, Jildevik I, Skog S, Thelander L, Tribukait B (1985) Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits. J Biol Chem 260: 9114–9116

    PubMed  CAS  Google Scholar 

  • Ewen ME, Xing YG, Lawrence JB, Livingston DM (1991) Molecular cloning, chromosomal mapping, and expression of the cDNA for p107, a retinoblastoma gene product-related protein. Cell 66: 1155–1164

    PubMed  CAS  Google Scholar 

  • Fagan R, Flint KJ, Jones N (1994) Phosphorylation of E2F-1 modulates its interaction with the retinoblastoma gene product and the adenovirus E4 19 kDa protein. Cell 78: 799–811

    PubMed  CAS  Google Scholar 

  • Fattaey AR, Harlow E, Helin K (1993) Independent regions of adenovirus E1A are required for binding to and dissociation of E2F-protein complexes. Mol Cell Biol 13: 7267–7277

    PubMed  CAS  Google Scholar 

  • Figge J, Webster T, Smith TF, Paucha E (1988) Prediction of similar transforming regions in simian virus 40 large T, adenovirus E1 A, and myc oncoproteins. J Virol 62: 1814–1818

    PubMed  CAS  Google Scholar 

  • Flemington EK, Speck SH, Kaelin WG Jr (1993) E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc Natl Acad Sci USA 90: 6914–6918

    PubMed  CAS  Google Scholar 

  • Frearson PM, Kit S, Dubbs DR (1965) Deoxythymidylate synthetase and deoxythymidine kinase activities of virus-infected animal cells. Cancer Res 25: 737

    PubMed  CAS  Google Scholar 

  • Frearson PM, Kit S, Dubbs DR (1966) Induction of dehydrofolate reductase activity by SV40 and polyoma virus. Cancer Res 26: 1653

    PubMed  CAS  Google Scholar 

  • Ginsberg D, Vairo G, Chittenden T, Xiao Z, Xu G, Wydner KL, DeCaprio JA, Lawrence JB, Livingston D (1994) E2F-4, a new member of the E2F transcription factor family, interacts with p107. Genes Dev 8: 2665–2679

    PubMed  CAS  Google Scholar 

  • Girling R, Partridge JF, Bandara LR, Burden N, Totty NF, Hsuan JJ, La Thangue NB (1993) A new component of the transcription factor DRTF1/E2F. Nature 362: 83–87

    PubMed  CAS  Google Scholar 

  • Hagemeier C, Cook A, Kouzarides T (1993) The retinoblastoma protein binds E2F residues required for activation in vivo and TBP binding in vitro. Nucleic Acids Res 21: 4998–5004

    PubMed  CAS  Google Scholar 

  • Hannon GJ, Demetrick D, Beach D (1993) Isolation of the Rb-related p130 through its interaction with cdk2 and cyclins. Genes Dev 7: 2378–2391

    PubMed  CAS  Google Scholar 

  • Hardy S, Shenk T (1989) E2F from adenovirus-infected cells binds cooperatively to DNA containing two properly oriented and spaced recognition sites. Mol Cell Biol 9: 4495–4506

    PubMed  CAS  Google Scholar 

  • Hardy S, Engel DA, Shenk T (1989) An adenovirus early region 4 gene product is required for induction of the infection-specific form of cellular E2F activity. Genes Dev 3: 1062–1074

    PubMed  CAS  Google Scholar 

  • Harlow E, Whyte P, Franza BR Jr, Schley C (1986) Association of adenovirus early-region 1A protein with cellular polypeptides. Mol Cell Biol 6: 1579–1589

    PubMed  CAS  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 cdk-interacting protein Cip1 is a potent inhibitor of G, cyclin-dependent kinases. Cell 75: 805–816

    PubMed  CAS  Google Scholar 

  • Hartwell L, Vogt M, Dulbecco R (1965) Induction of cellular DNA synthesis by polyoma. li. Increase in the rate of enzyme synthesis after infection with polyoma virus in mouse embryo kidney cells. Virology 27: 262

    PubMed  CAS  Google Scholar 

  • Hatanaka M, Dulbecco R (1966) Induction of DNA synthesis by SV40. Proc Natl Acad Sci USA 56: 736–740

    PubMed  CAS  Google Scholar 

  • Helin K, Harlow E (1994) Heterodimerization of the transcription factors E2F-1 and DP-1 is required for binding to the adenovirus E4 (ORF6/7) protein. J Virol 68: 5027–5035

    PubMed  CAS  Google Scholar 

  • Helin K, Lees JA, Dyson N, Harlow E, Fattaey A (1992) A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 70: 337–350

    PubMed  CAS  Google Scholar 

  • Helin K, Harlow E, Fattaey A (1993a) Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol 13: 6501–6508

    CAS  Google Scholar 

  • Helin K, Wu C-L, Fattaey AR, Lees JA, Dynlacht BD, Ngwu C, Harlow E (1993b) Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation. Genes Dev 7: 1850–1861

    CAS  Google Scholar 

  • Hiebert SW (1993) Regions of the retinoblastoma gene product required for its interaction with the E2F transcription factor are necessary for E2 promoter repression and pRb-mediated growth suppression. Mol Cell Biol 13: 3384–3391

    PubMed  CAS  Google Scholar 

  • Hiebert SW, Lipp M, Nevins JR (1989) E1A-dependent trans-activation of the human MYC promoter is mediated by the E2F factor. Proc Natl Acad Sci USA 86: 3594–3598

    PubMed  CAS  Google Scholar 

  • Hiebert SW, Blake M, Azizkhan J, Nevins JR (1991) Role of E2F transcription factor in E1A-mediated trans-activation of cellular genes. J Virol 65: 3547–3552

    PubMed  CAS  Google Scholar 

  • Hiebert SW, Chellappan SP, Horowitz JM, Nevins JR (1992) The interaction of RB with E2F coincides with an inhibition of the transcriptional activity of E2F. Genes Dev 6: 177–185

    PubMed  CAS  Google Scholar 

  • Huang MM, Hearing P (1989) The adenovirus early region 4 open reading frame 6/7 protein regulates the DNA binding activity of the cellular transcription factor, E2F, through a direct complex. Genes Dev 3: 1699–1710

    PubMed  CAS  Google Scholar 

  • Huang PS, Patrick DR, Edwards G, Goodhart PJ, Huber HE, Miles L, Garsky VM, Oliff A, Heimbrook DC (1993) Protein domains governing interactions between E2F, the retinoblastoma gene product, and human papillomavirus type 16 E7 protein. Mol Cell Biol 13: 953–960

    PubMed  CAS  Google Scholar 

  • Huber HE, Goodhart PJ, Huang PS (1994) Retinoblastoma protein reverses DNA bending by transcription factor E2F. J Biol Chem 269: 6999–7005

    PubMed  CAS  Google Scholar 

  • Ikeda M-A, Nevins JR (1993) Identification of distinct roles for separate E1A domains in the disruption of E2F complexes. Mol Cell Biol 13: 7029–7035

    PubMed  CAS  Google Scholar 

  • Jacobson JG, Leib DA, Goldstein DJ, Bogard CL, Schaffer PA, Weller SK, Coen DM (1989) A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology 173: 276–283

    PubMed  CAS  Google Scholar 

  • Johnson DG, Schwarz JK, Cress WD, Nevins JR (1993) Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365: 349–352

    PubMed  CAS  Google Scholar 

  • Johnson DG, Cress WD, Jakoi L, Nevins JR (1994) Oncogenic capacity of the E2F1 gene. Proc Natl Acad Sci USA 91: 12823–12827

    PubMed  CAS  Google Scholar 

  • Kaelin WG, Krek W, Sellers WR, DeCaprio JA, Ajchenbaum F, Fuchs CS, Chittenden T, Li Y, Farnham PJ, Blanar MA et al (1992) Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70: 351–364

    PubMed  CAS  Google Scholar 

  • Kara J, Weil R (1967) Specific activation of the DNA synthesizing apparatus in contact inhibited cells by polyoma virus. Proc Natl Acad Sci USA 57: 63

    PubMed  CAS  Google Scholar 

  • Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ (1993) Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev 7: 331–342

    PubMed  CAS  Google Scholar 

  • Kit S, Dubbs DR, Frearson PM (1966a) Enzymes of nucleic acid metabolism in cells infected with polyoma virus. Cancer Res 26: 638

    CAS  Google Scholar 

  • Kit S, Dubbs DR, Frearson PM, Melnick JL (1966b) Enzyme induction in SV40-infected green monkey kidney cultures. Virology 29: 69

    CAS  Google Scholar 

  • Kit S, De Torres RA, Dubbs DR, Salvi ML (1967a) Induction of cellular deoxyribonucleic acid synthesis by simian virus 40. J Virol 1: 738

    CAS  Google Scholar 

  • Kit S, Piekarski LJ, Dubbs DR (1967b) DNA polymerase induced by simian virus 40. J Gen Virol 1: 163

    CAS  Google Scholar 

  • Kovesdi I, Reichel R, Nevins JR (1986a) E1A transcription induction: enhanced binding of a factor to upstream promoter sequences. Science 231: 719–722

    CAS  Google Scholar 

  • Kovesdi I, Reichel R, Nevins JR (1986b) Identification of a cellular transcription factor involved in E1A trans-activation. Cell 45: 219–228

    CAS  Google Scholar 

  • Kovesdi I, Reichel R, Nevins JR (1986b) Identification of a cellular transcription factor involved in E1A trans-activation. Cell 45: 219–228

    CAS  Google Scholar 

  • Lam EW, Watson RJ (1993) An E2F-binding site mediates cell-cycle regulated repression of mouse B-myb transcription. EMBO J 12: 2705–2713

    PubMed  CAS  Google Scholar 

  • Ledinko N (1968) Enhanced deoxyribonucleic acid polymerase activity in human embryonic kidney cultures infected with adenovirus 2 and 12. J Virol 2: 89–98

    PubMed  CAS  Google Scholar 

  • Li Y, Graham C, Lacy S, Duncan AMV, Whyte P (1993) The adenovirus E1A-associated 130-kd protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclins A and E. Genes Dev 7: 2366–2377

    CAS  Google Scholar 

  • Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD (1992) Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70: 923–935

    PubMed  CAS  Google Scholar 

  • Loeken MR, Brady J (1989) Analysis of regulatory sequences and changes in binding activity of ATF and EIIF following adenovirus infection. J Biol Chem 264: 6572–6579

    PubMed  CAS  Google Scholar 

  • Marton MJ, Bairn SB, Ornelles DA, Shenk T (1990) The adenovirus E4 17-kilodalton protein complexes with the cellular transcription factor E2F, altering its DNA-binding properties and stimulating E1Aindependent accumulation of E2 mRNA. J Virol 64: 2345–2359

    PubMed  CAS  Google Scholar 

  • Matsushime H, Roussel MF, Ashmun RA, Sherr CJ (1991) Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65: 701–713

    PubMed  CAS  Google Scholar 

  • Mayol X, Grana X, Baldi A, Sang N, Hu Q, Giordano A (1993) Cloning of a new member of the retinoblastoma gene family (pRb2) which binds to the ElA transforming domain. Oncogene 8: 2561–2566

    PubMed  CAS  Google Scholar 

  • Neill SD, Nevins JR (1991) Genetic analysis of the adenovirus E4 6/7 trans-activator: interaction with E2F and induction of a stable DNA-protein complex are critical for activity. J Virol 65: 5364–5373

    PubMed  CAS  Google Scholar 

  • Neill SD, Hemstrom C, Virtanen A, Nevins JR (1990) An adenovirus E4 gene product trans-activates E2 transcription and stimulates stable E2F binding through a direct association with E2F. Proc Natl Acad Sci USA 87: 2008–2012

    PubMed  CAS  Google Scholar 

  • Nevins JR (1987) Regulation of early adenovirus gene expression. Microbiol Rev 51: 419–430

    PubMed  CAS  Google Scholar 

  • Obert S, O’Connor RJ, Schmid S, Hearing P (1994) The adenovirus E4–6/7 protein transactivates the E2 promoter by inducing dimerization of a heteromeric E2F complex. Mol Cell Biol 14: 1333–1346

    PubMed  CAS  Google Scholar 

  • O’Connor RJ, Hearing P (1991) The C-terminal 70 amino acids of the adenovirus E4–ORF6/7 protein are essential and sufficient for E2F complex formation. Nucleic Acids Res 19: 6579–6586

    PubMed  Google Scholar 

  • O’Connor RJ, Hearing P (1994) Mutually exclusive interaction of the adenovirus E4–6/7 protein and the retinoblastoma gene product with internal domains of E2F-1 and DP-1. J Virol 68: 6848–6862

    PubMed  Google Scholar 

  • Pilder S, Logan J, Sheck T (1984) Deletion of the gene encoding the adenovirus 5 early region 1b 21,000-molecular-weight polypeptide leads to degradation of viral and host cell DNA. J Virol 52: 664–671

    PubMed  CAS  Google Scholar 

  • Qin X Q, Livingston DM, Kaelin WG, Adams PD (1994) Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci USA 91: 10918–10922

    PubMed  CAS  Google Scholar 

  • Raychaudhuri P, Bagchi S, Neill SD, Nevins JR (1990) Activation of the E2F transcription factor in adenovirus-infected cells involves E1A-dependent stimulation of DNA-binding activity and induction of cooperative binding mediated by an E4 gene product. J Virol 64: 2701–2710

    Google Scholar 

  • Raychaudhuri P, Bagchi S, Devoto SH, Kraus VB, Moran E, Nevins JR (1991) Domains of the adenovirus ElA protein required for oncogenic activity are also required for dissociation of E2F transcription factor complexes. Genes Dev 5: 1200–1211

    PubMed  CAS  Google Scholar 

  • Reichel R, Neill SD, Kovesdi I, Simon MC, Raychaudhuri P, Nevins JR (1989) The adenovirus E4 gene, in addition to the ElA gene, is important for trans-activation of E2 transcription and for E2F activation. J Virol 63: 3643–3650

    PubMed  CAS  Google Scholar 

  • Scheffner M, Munger K, Byrne JC, Howley PM (1991) The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc Natl Acad Sci USA 88: 5523–5527

    PubMed  CAS  Google Scholar 

  • Schwarz JK, Bassing CH, Kovesdi I, Datto MB, Blazing M, George S, Wang X, Nevins JR (1995) Expression of the E2F1 transcription factor overcomes type (3 transforming growth factor-mediated growth suppression. Proc Natl Acad Sci USA 92: 483–487

    PubMed  CAS  Google Scholar 

  • Shan B, Lee W (1994) Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol Cell Biol 14: 8166–8173

    PubMed  CAS  Google Scholar 

  • Shan B, Zhu X, Chen PL, Durfee T, Yang Y, Sharp D, Lee WH (1992) Molecular cloning of cellular genes encoding retinoblastoma-associated proteins: identification of a gene with properties of the transcription factor E2F. Mol Cell Biol 12: 5620–5631

    PubMed  CAS  Google Scholar 

  • Sheinin R (1966) Studies on the thymidine kinase activity of mouse embryo cells infected with polyoma virus. Virology 28: 47

    PubMed  CAS  Google Scholar 

  • Shirodkar S, Ewen M, DeCaprio JA, Morgan J, Livingston DM, Chittenden T (1992) The transcription factor E2F interacts with the retinoblastoma product and a p107-cyclin A complex in a cell cycle-regulated manner. Cell 68: 157–166

    PubMed  CAS  Google Scholar 

  • Singh P, Wong SW, Hong W (1994) Overexpression of E2F-1 in rat embryo fibroblasts leads to neoplastic transformation. EMBO J 13: 3329–3338

    PubMed  CAS  Google Scholar 

  • Slansky JE, Li Y, Kaelin WG, Farnham PJ (1993) A protein synthesis-dependent increase in E2F1 mRNA correlates with growth regulation of the dihydrofolate reductase promoter. Mol Cell Biol 13: 1610–1618

    PubMed  CAS  Google Scholar 

  • Thalmeier K, Synovzik H, Mertz R, Winnacker EL, Lipp M (1989) Nuclear factor E2F mediates basic transcription and trans-activation by Ela of the human MYC promoter. Genes Dev 3: 527–536

    PubMed  CAS  Google Scholar 

  • Thelander L. Reichard P (1979) Reduction of ribonucleotides. Annu Rev Biochem 48: 133–158

    PubMed  CAS  Google Scholar 

  • Tsai LH, Harlow E, Meyerson M (1991) Isolation of the human cdk2 gene that encodes the cyclin A- and adenovirus E1A-associated p33 kinase. Nature 353: 174–177

    PubMed  CAS  Google Scholar 

  • Wang HH, Rikitake Y, Carter MC, Yaciuk P, Abraham SE, Zerler B, Moran E (1993) Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J Virol 67: 476–488

    PubMed  CAS  Google Scholar 

  • White E (1993) Death-defying acts: a meeting review on apoptosis. Genes Dev 7: 2277–2284

    PubMed  CAS  Google Scholar 

  • White E, Grodzicker T, Stillman BW (1984) Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J Virol 52: 410

    PubMed  CAS  Google Scholar 

  • Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E (1988) Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334: 124–129

    PubMed  CAS  Google Scholar 

  • Whyte P, Williamson NM, Harlow E (1989) Cellular targets for transformation by the adenovirus E1A proteins. Cell 56: 67–75

    PubMed  CAS  Google Scholar 

  • Wu L, Berk AJ (1988) Transcriptional activation by the pseudorabies virus immediate early protein requires the TATA box element in the adenovirus 2 El B promoter. Virology 167: 318–322

    PubMed  CAS  Google Scholar 

  • Wu X, Levine AJ (1994) p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA 91: 3602–3606

    PubMed  CAS  Google Scholar 

  • Xiong Y, Connolly T, Futcher B, Beach D (1991) Human D type cyclin. Cell 65: 691–699

    PubMed  CAS  Google Scholar 

  • Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704

    PubMed  CAS  Google Scholar 

  • Yamashita T, Shimojo H (1969) Induction of cellular DNA synthesis by adenovirus 12 in human embryo kidney cells. Virology 38: 351–355

    PubMed  CAS  Google Scholar 

  • Yee S, Branton PE (1985) Detection of cellular proteins associated with human adenovirus type 5 early 1A polypeptides. Virology 147: 142–153

    PubMed  CAS  Google Scholar 

  • Yee AS, Raychaudhuri P, Jakoi L, Nevins JR (1989) The adenovirus-inducible factor E2F stimulates transcription after specific DNA binding. Mol Cell Biol 9: 578–585

    PubMed  CAS  Google Scholar 

  • Zamanian M, La Thangue NB (1993) Transcriptional repression by the Rb-related protein p107. Mol Biol Cell 4: 389–396

    PubMed  CAS  Google Scholar 

  • Zhu L, van den Heuvel S, Helin K, Fattaey A, Ewen M, Livingston D, Dyson N, Harlow E (1993) Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein. Genes Dev 7: 1111–1125

    PubMed  CAS  Google Scholar 

  • zur Hausen H, Gissmann L, Schlehofer JR (1984) Viruses in the etiology of human genital cancer. Prog Med Virol 30: 170–186

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cress, W.D., Nevins, J.R. (1996). Use of the E2F Transcription Factor by DNA Tumor Virus Regulatory Proteins. In: Farnham, P.J. (eds) Transcriptional Control of Cell Growth. Current Topics in Microbiology and Immunology, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79910-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79910-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79912-9

  • Online ISBN: 978-3-642-79910-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics