Influence of the Carbon Substrate on the Composition of the Exocellular Polysaccharides by Azospirillum brasilense

  • Francesca Marini
  • Silvia Speranza
  • Maddalena del Gallo
Conference paper
Part of the NATO ASI Series book series (volume 37)


In the present study exocellular-polysaccharide (PS), capsular and low and high MW exo-polysaccharides produced by Azospirillum brasiliense were analysed and the influence of growth medium on the composition of all fractions was evaluated.

HPLC analyses showed that the capsular-PS contained significant amounts of glucose, galactose, rhamnose, arabinose and fucose. The approximate molar ratio of these sugars were 2:4:11:2:6. In some preparations glucuronic acid and acetyl moieties were detected.

The qualitative composition of the high MW exo-PS (EPSi) was similar to CPS but ratios were different. In particular, glucose and galactose were present in a greater amount and glucuronic acid was never detected. The low MW exo-PS (EPSs) fraction contained a higher galactose and arabinose content in comparison with the capsular fraction and no rhamnose.


Glucuronic Acid Azospirillum Brasilense Acetyl Moiety Azospirillum Strain Azospirillum Lipoferum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bashan Y, Levanony H (1990) Currents status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36: 591–608CrossRefGoogle Scholar
  2. Becking J H (1985) Pleomorphism in Azospirillum, In Azospirillum III: Genetics, Physiology, Ecology. Klingmüller W (ed) Springer-Verlag Berlin Heidelberg pp 243–262Google Scholar
  3. Choma A, Russa R, Mayer H, Lorkiewicz Z (1987) Chemical analysis of Azospirillum lipopolysaccharides. Arch Microbiol 146: 341–345CrossRefGoogle Scholar
  4. Costerton JW, Irvin RT, Chen KJ (1979) The bacterial glycocalyx in nature and disease. Ann Rev Microbiol 35: 299–324CrossRefGoogle Scholar
  5. Croes C L, Moens S, Van Bastelaere E, Vanderleyden J, Michiels KW (1993) Polar flagellum mediates Azospirillum brasilense adsorption to wheat roots. J Gen Microbiol 139: 2261–2269Google Scholar
  6. De Troch P, Philip-Hollingsworth S, Orgambide G, Dazzo FB, Vanderleyden J (1992) Analysis of extracellular polysaccharides isolated from Azospirillum brasilense wild type and mutant strains. Symbiosis 13: 229–241Google Scholar
  7. De Troch P (1993) Dissertationes de agricultura: Bacterial surface polysaccharides in relation to plant interaction: a genetic and chemical study of Azospirillum brasilense. pp. 279Google Scholar
  8. Del Gallo M, Negi M, Neyra C (1989) Calcofluor- and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum. J Bacteriol 171: 3504–3510PubMedGoogle Scholar
  9. Del Gallo M, Haegi A (1990) Characterization and quantification of exocellular polysaccharides in Azospirillum brasilense and Azospirillum lipoferum. Symbiosis 9: 155–161Google Scholar
  10. Diaz C L, Melchers L S, Hooijkaans P J J, Lugtenberg B J J, Kijne J W (1989) Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338: 579–581CrossRefGoogle Scholar
  11. Dische Z (1962) General colour reactions. Methods Charbohydr Chem 1: 477–479Google Scholar
  12. Fani R, Bazzicalupo M, Gallori E, Giovannetti L, Ventura S, Polsinelli M (1991) Restriction fragment lenght polymorphism of Azospirillum strains. FEMS Microbiol Lett 83: 225–230Google Scholar
  13. Gafny R, Okon Y, Kapulnik Y, Fischer M (1986) Adsorption of Azospirillum brasilense to corn roots. Soil Biol Biochem 18: 69–75CrossRefGoogle Scholar
  14. Gray JX, deMaagd R, Rolfe BG, Johnston AWB, Lugtenberg JJ (1992) The role of the Rhizobium cell surface during symbiosis. In Molecular signals in plant-microbe communications Verma DPS (ed)CRC press pp 360–376Google Scholar
  15. Gündisch C, Kirchhof G, Baur M, Bode W, Hartmann A, (1993) Identification of Azospirillum strains by RFLP and pulsed field gel electrophoresis. Microbial Releases 2: 41–45PubMedGoogle Scholar
  16. Haegi A, Del Gallo M (1991) Azospirillum-plant interaction: a biochemical approach. In “Nitrogen Fixation”. M. Polsinelli, R. Materassi, M. Vincenzini, (eds). Kluwer Acad Publishers pp 147–153CrossRefGoogle Scholar
  17. Halverson LJ, Stacey G (1986) Plant Microbe Interactions. Microbiol Rev 50: 193PubMedGoogle Scholar
  18. Karkhanis YD, Zeltner JY, Jackson JJ, Carlo DJ (1978). A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative bacteria. Analytical Biochemistry 85: 595–601PubMedCrossRefGoogle Scholar
  19. Konnova SA, Baberdina IV, Makarov OE, Skvortsov IM, Ignatov VV(1990) Polysaccharide-lipid complex degradation, fractionation and monosaccharide composition of polysaccharides. Mikrobiol Zhurn 52: 40–46Google Scholar
  20. Konnova SA, Makarov OE, Skvortsov IM, Ignatov VV (1992) Exopolysaccharides of bacteria Azospirilium brasilense Sp 245 and Sp 107. Mikrobiol Zhurn 54: 31–42Google Scholar
  21. Levanony H, Bashan Y (1989) Localization of specific antigens of Azospirillum brasilense Cd in its exopolysaccharide by immuno-gold staining. Curr Microbiol 18: 145–149CrossRefGoogle Scholar
  22. Lowry OH, Rosenbrough NJ, Farr RL, Randal RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275PubMedGoogle Scholar
  23. Martinez-Drets G, Del Gallo M, Burpee C, Burris RH (1984) Catabolism of carbohydrates and organic acids and expression of nitrogenase by Azospirilla. J Bacteriol 159: 80–85PubMedGoogle Scholar
  24. Marty N, Dournes J L, Chabanon G, Montrozier H (1992) Influence of nutrient media on the chemical composition of the exopolysaccharide from mucoid and non-mucoid Pseudomonas aeruginosa. FEMS Microbiol Lett 98: 35–44CrossRefGoogle Scholar
  25. Matthysse AG (1983) Role of bacterial cellulose fibrils in infection. J Bacteriol 154: 906–915PubMedGoogle Scholar
  26. Matthysse AG (1987) Characterization of non attaching mutants of Agrobacterium tumefaciens. J Bacteriol 169: 313–323PubMedGoogle Scholar
  27. Michiels K, Vanderleyden J, Van Gool A, Signer E R (1988) Isolations and characterization of Azospirillum brasilense loci that correct Rhizobium meliloti exoB and exoC mutations. J Bacteriol 170: 5401–5404PubMedGoogle Scholar
  28. Michiels K, Vanderleiden J, Van Gool A (1989) Azospirillum-plant root associations: A review. Biol Fertil Soils 8: 356–368Google Scholar
  29. Michiels K W, Verreth C, Vanderleyden J (1990) Azospirillum lipoferum and Azospirillum brasilense surface polysaccharide mutants that are affected in flocculation. J Appl Bacteriol 69: 705–711Google Scholar
  30. Michiels K, Croes CL, Vanderleyden J (1991) Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol 137: 2241–2246Google Scholar
  31. Razin S (1973) The physiology of mycoplasmas. Adv Microbial Physiol 10: 1–80.CrossRefGoogle Scholar
  32. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61Google Scholar
  33. Sadasivan L, CA Neyra (1985) Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. J Bacteriol 163: 716–723PubMedGoogle Scholar
  34. Sutherland IW (1982) Biosynthesis of microbial exopolysaccharides. Adv Microbial Physiol 23: 79–150CrossRefGoogle Scholar
  35. Umali-Garcia M, Hubbel DH, Gaskins MH, Dazzo FB. (1980) Association of Azospirillum with grass roots. Appl Environ Microbiol 39: 219–226PubMedGoogle Scholar
  36. Vanderleyden J, Costacurta A, Desair J, De Troch P, Dobbelaere S, Keijers V, Michiels K, Milcamps, Moens S, My Bekri A, Pedersen D, Van Bastelaere E, Vande Broek A, Van Dommeln A Azospirillum-Cereals: a Partnership with Future (this volume)Google Scholar
  37. Wicken AJ, Ayres A, Campbell LK, Knox K W (1983) Effect of growth conditions on production of Rhamnose-containing cell wall and capsular polysaccharides by strains of Lactobacillus casei subsp. rhamnosus. JBacteriol 153: 84–92Google Scholar
  38. Yagoda-Shagam J, Barton LL, Reed WP, Chiovetti R(1988). Fluorescein isothiocyanate-labeled lectin analysis of the surface of the nitrogen-fixing bacterium Azospirillum brasilense by flow cytometry. Appl Environ Microbiol. 54: 1831–1837Google Scholar
  39. Zaady E, Perevolotsky A, Okon Y (1993) Promotion of plant growth by inoculum with aggregated and single cell suspensions of Azospirillum brasilense Cd. Soil Biol Biochem 25: 819–823.CrossRefGoogle Scholar
  40. Zevenhuizen LPTM (1986) Selective synthesis of polysacchrides by Rhizobium trifolii strain TA-1. FEMS Microbiol Lett 35: 43–47CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Francesca Marini
    • 1
    • 2
  • Silvia Speranza
    • 1
    • 2
  • Maddalena del Gallo
    • 1
  1. 1.Dept. Food Technology, Environmental and Microbiological SciencesUniversity of MoliseCampobassoItaly
  2. 2.Biotechnology and Agriculture SectorENEA-CasacciaRomeItaly

Personalised recommendations