Advertisement

Azospirillum-Cereals: An Intriguing Partnership

  • Jos Vanderleyden
  • My Ali Bekri
  • Antonia Costacurta
  • Jos Desair
  • Paul De Troch
  • Sofie Dobbelaere
  • Veerle Keijers
  • Kris Michiels
  • Anne Milcamps
  • Sara Moens
  • Daniel Petersen
  • Els Prinsen
  • Els Van Bastelaere
  • Ann Vande Broek
  • Anne Van Dommelen
  • August Van Gool
  • Harry Van Onckelen
Part of the NATO ASI Series book series (volume 37)

Abstract

Azospirillum is probably the best studied example of beneficial plant rhizosphere bacteria. Studies in our laboratory focus on the identification of bacterial genes and gene products that are of importance in the physical and metabolic interaction of Azospirillum brasilense with plant roots. Here we report for Azospirillum brasilense, flagellation, motility, the physical interaction with plant roots, the synthesis of indole-3-acetic acid, the expression of nif genes in plant-root associated bacteria, and the induction of gene expression with plant root exudates.

Keywords

Wheat Root Azospirillum Brasilense Polar Flagellum Flagellin Gene Plant Root Exudate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Salam MS, Klingmiiller W (1987) Transposon Tn5 mutagenesis in Azospirillum lipoferum: isolation of indole-3-acetic acid mutants. Mol Gen Genet 210: 165–170CrossRefGoogle Scholar
  2. Arshad M, Frankenberger JWT (1991) Microbial production of plant hormones. Plant Soil 133: 1–8CrossRefGoogle Scholar
  3. Bar T, Okon Y (1993) Tryptophan conversion to indole-3-acetic acid via indole-3-acetamide in Azospirillum brasilense Sp7. Can J Microbiol 39: 81–86CrossRefGoogle Scholar
  4. Costacurta A (1995) Genetic studies on the auxin hypothesis in the Azospirillum/plant interaction. Ph.D. Thesis, Katholieke Universiteit LeuvenGoogle Scholar
  5. Costacurta A, Keijers V, Michiels K, Vanderleyden J (1994) Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase. Mol Gen Genet 243: 463–472PubMedGoogle Scholar
  6. Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol: 21, 1–18PubMedCrossRefGoogle Scholar
  7. Croes CL, Moens S, Van Bastelaere E, Vanderleyden J, Michiels KW (1993) The polar flagellum mediates Azospirillum brasilense adsorption to wheat roots. Gen Microbiol 139: 960–967Google Scholar
  8. De Mot R, Vanderleyden J (1989) Application of two-dimensional protein analysis for strain fingerprinting and mutant analysis of Azospirilium species. Can J Microbiol 35: 960–967CrossRefGoogle Scholar
  9. Guerry P, Aim RA, Power ME, Logan SM, Trust TJ (1991) Role of two flagellin genes in Campylobacter motility. J. Bacteriol 173: 4757–4764Google Scholar
  10. Inouye S, Kimoto M, Nakazawa A, Nakazawa T (1990) Presence of Pseudomonas putida is dependent on ntrA (rpoN) gene. Mol Gen Genet 221: 295–298CrossRefGoogle Scholar
  11. Kobayashi M, Suzuki T, Fujita T, Masuda M, Shimizu S (1995) Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Proc Natl Acad Sci USA 92: 714–718PubMedCrossRefGoogle Scholar
  12. Koga J, Adachi T, Hidaka H (1991) Molecular cloning of the gene for indole pyruvate decarboxylase from Enterobacter cloacae. Mol Gen Genet 226: 10–16PubMedCrossRefGoogle Scholar
  13. Koga J, Adachi T, Hidaka H (1992) Purification and characterization of indolepyruvate decarboxylase. J. Biol Chem. 26: 15823–15828Google Scholar
  14. Lafferty Doty S, Chang M, Nester EW (1993) The chromosomal virulence gene, chvE, of Agrobacterium tumefaciens is regulated by a LysR family member. J Bacteriol 175: 7880–7886Google Scholar
  15. Lavigne C (1987) Contribution à l’étude du système racinaire du bananier Mise au point de rhizotrons et premiers résultats. Fruits 42: 265–271Google Scholar
  16. Milcamps A, Van Dommelen A, Stigter J, Vanderleyden J, de Bruijn FJ (1995) The Azospirillum brasilense ntrA gene is involved in nitrogen fixation, nitrate assimilation, ammonium uptake and flagella biosynthesis. SubmittedGoogle Scholar
  17. Moens S, Michiels K, Vanderleyden J (1995) Glycosylation of the flagellin of the polar flagellum of Azospirillum brasilense, a Gram-negative nitrogen-fixing bacterium. Submitted a Google Scholar
  18. Moens S, Michiels K, Keijers V, Van Leuven F, Vanderleyden J (1995) Cloning, sequencing and phenotypic analysis of lafl, encoding the flagellum of the lateral flagella of Azospirillum brasilense Sp7. Submitted b Google Scholar
  19. Nohno T, Saito T, Hog J (1986) Cloning and complete nucleotide sequence of the Escherichia coli glutamine permease operon (glnHPQ). Mol Gen Genet 205: 260–269PubMedCrossRefGoogle Scholar
  20. Pleier E, Schmitt R (1991) Expression of two Rhizobium meliloti flagellin genes and their contribution to the complex filament structure. J Bacteriol 173: 2077–2085PubMedGoogle Scholar
  21. Prinsen E, Costacurta A, Michiels K, Vanderleyden J, Van Onckelen H (1993) Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol Plant-Microbe Interact 6: 609–615Google Scholar
  22. Ramakrishnan G, Zhao JL, Newton A (1994) Multiple structural proteins are required for both transcriptional activation and negative autoregulation of Caulobacter crescentus flagellar genes. J Bacteriol 176: 7587–7600PubMedGoogle Scholar
  23. Reynders L, Vlassak K (1979) Conversion of tryptophan to indole acetic acid by Azospirillum sp. Soil Biol Biochem 11: 547–548CrossRefGoogle Scholar
  24. Shimoda N, Toyoda-Yamamoto A, Aoki S, Machida Y (1993) Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. J Biol Chem 268: 26552–26558PubMedGoogle Scholar
  25. Simon R, Quandt J, Klipp W (1989) New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in Gram-negative bacteria. Gene 80: 161–169PubMedCrossRefGoogle Scholar
  26. Tarrand JJ, Krieg NR, Dobereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with description of a new genus, Azospirillum gen. nov., and two species Azospirillum lipoferum (Beijerinck) sp. nov. and Azospirillum lipoferum sp. nov. Can J Microbiol 24: 967–980PubMedCrossRefGoogle Scholar
  27. Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environm Microbiol 37: 1016–1024Google Scholar
  28. Totten PA, Cano Laro J, Lory S (1990) The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol 172: 389–396PubMedGoogle Scholar
  29. Van Bastelaere E, De Mot R, Michiels K, Vanderleyden J (1993) Differential gene expresion in Azospirillum spp. by plant root exudates: analysis of protein profiles by two-dimensional polyacrylamide gel electrophoresis. FEMS Microbiol lett 112: 335–342CrossRefGoogle Scholar
  30. Vande Broek A (1994) Histochemical and genetic analysis of the Azospirillum brasilense-wheat root association. Ph.D. Thesis, Katholieke Universiteit LeuvenGoogle Scholar
  31. Vande Broek A, Michiels J, de Faria SM, Milcamps A, Vanderleyden J (1992) Transcription of the Azospirillum brasilense nifH gene is positively regulated by NifA and NtrA and is negatively controlled by the cellular nitrogen status. Mol Gen Genet 232: 279–283Google Scholar
  32. Vande Broek A, Michiels J, Vangool A, Vanderleyden J (1993) Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH gene during the association. Mol Plant-Microb Interact 6: 592–600CrossRefGoogle Scholar
  33. Vanstockem M, Michiels K, Vanderleyden J, Van Gool A (1987) Transposon mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: Physiological analsyis of Tn5 and Tn5-mob insertional mutants. Appl Environm Microbiol 53: 410–415Google Scholar
  34. von Bulow JGD, Dobereinder J (1975) Potential for nitrogen fixation in maize genotypes in Brazil. Proc Natl Acad Sci USA 72: 2389–2393CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Jos Vanderleyden
    • 1
  • My Ali Bekri
    • 1
  • Antonia Costacurta
    • 1
  • Jos Desair
    • 1
  • Paul De Troch
    • 1
  • Sofie Dobbelaere
    • 1
  • Veerle Keijers
    • 1
  • Kris Michiels
    • 1
  • Anne Milcamps
    • 1
    • 2
  • Sara Moens
    • 1
  • Daniel Petersen
    • 1
    • 3
  • Els Prinsen
    • 1
    • 4
  • Els Van Bastelaere
    • 1
  • Ann Vande Broek
    • 1
  • Anne Van Dommelen
    • 1
  • August Van Gool
    • 1
  • Harry Van Onckelen
    • 1
    • 4
  1. 1.F.A. Janssens Laboratory of Genetics Department of Applied Plant SciencesK.U. LeuvenHeverleeBelgium
  2. 2.Plant Research LaboratoryMSU-DOEEast LansingUSA
  3. 3.Department of Plant ScienceUniversity of British ColumbiaVancouverCanada
  4. 4.Department of BiologyUniversitaire Instelling AntwerpenWilrijkBelgium

Personalised recommendations