Changes in Membrane Potential upon Chemotactic Stimulation of Azospirillum brasilense

  • Igor B. Zhulin
  • Lisa E. Sarmiento
  • Barry L. Taylor
Conference paper
Part of the NATO ASI Series book series (volume 37)

Abstract

Azospirillum brasilense is capable of aerotaxis (Barak et al., 1982), redox taxis (Grishanin et al., 1991), and chemotaxis towards different organic compounds (Barak et al., 1983). The aerotactic response in A. brasilense was shown to be dependent on electron flow through the redox chain and consequent changes in the proton motive force (pmf) (Grishanin et al., 1991). The functioning redox chain was shown to be responsible for producing several types of behavioral responses in bacteria including aerotaxis, phototaxis and some cases of chemotaxis. The proton motive force generated by electron transport is thought to be a parameter measured by the cell in order to produce these tactic responses (Taylor, 1983). Since A. brasilense lacks dedicated chemoreceptors or methyl-accepting chemotaxis proteins (Zhulin and Armitage, 1993), we propose that the main chemotaxis pathway in this bacterium might be dependent on pmf-sensing. In this paper, we present data supporting this proposal. Changes in chemotactic behavior of A. brasilense coincided with changes in membrane potential, the main component of the proton motive force.

Keywords

Glycerol Agar HEPES Succinate Phosphonium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barak R, Nur I, Okon Y (1983) Detection of Chemotaxis in Azospirillum brasilense. J Appl Bacteriol 53:399–403Google Scholar
  2. Barak R, Nur I, Okon Y, Henis Y (1982) Aerotactic response of Azospirillum brasilense. J Bacteriol 152: 643–649PubMedGoogle Scholar
  3. Bibikov SI, Grishanin RN, Kaulen AD, Marwan W, Oesterhelt D, Skulachev VP (1993) Bacteriorhodopsin is involved in halobacterial photoreception. Proc Nad Acad Sci USA 90: 9446–9450CrossRefGoogle Scholar
  4. Glagolev AN (1980) Reception of the energy level in bacterial taxis. J Theor Biol 82: 171–185PubMedCrossRefGoogle Scholar
  5. Glagolev AN (1984) Bacterial μΔH+-sensing. Trends Biochem Sci 9: 397–400CrossRefGoogle Scholar
  6. Glagolev AN, Skulachev VP (1978) The proton pump is a molecular engine of motile bacteria. Nature 272: 280–282PubMedCrossRefGoogle Scholar
  7. Goodsell DS (1991) Inside a living cell. Trends Biochem Sci 16: 203–206PubMedCrossRefGoogle Scholar
  8. Grishanin RN, Chalmina II, Zhulin IB (1991) Behaviour of Azospirillum brasilense in a spatial gradient of oxygen and a ‘redox’ gradient of an artificial electron acceptor. J Gen Microbiol 137: 2781–2785Google Scholar
  9. Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membrane Biol 49: 105–121CrossRefGoogle Scholar
  10. Kashket ER (1985) The proton motive force in bacteria: a critical assessment of methods. Annu Rev Microbiol 39: 219–242PubMedCrossRefGoogle Scholar
  11. Laszlo DJ, Taylor BL (1981) Aerotaxis in Salmonella typhimurium: role of electron transport. J Bacteriol 145: 990–1001PubMedGoogle Scholar
  12. Manson MD, Tedesco P, Berg HC, Harold FM, van der Drift C (1977) A proton motive force drives bacterial flagella. Proc Natl Acad Sci USA 74: 3060–3064PubMedCrossRefGoogle Scholar
  13. Sherman MYu, Glagolev AN (1981) Sensing of the proton motive force in Escherichia coli Chemotaxis. FEMS Microbiol Lett 12: 121–124CrossRefGoogle Scholar
  14. Shioi J, Taylor BL (1984) Oxygen taxis and proton motive force in Salmonella typhimurium. J Biol Chem 259: 10983–10988PubMedGoogle Scholar
  15. Shioi J, Tribhuwan RC, Berg ST, Taylor BL (1988) Signal transduction in Chemotaxis to oxygen in Escherichia coli and Salmonella typhimurium. J Bacteriol 170: 5507–5511PubMedGoogle Scholar
  16. Taylor BL (1983) Role of proton motive force in sensory transduction in bacteria. Annu Rev Microbiol 37: 551–573PubMedCrossRefGoogle Scholar
  17. Taylor BL, Miller JB, Warrick HM, Koshland DE, Jr (1979) Electron acceptor taxis and blue light effect on bacterial Chemotaxis. J Bacteriol 140: 567–573PubMedGoogle Scholar
  18. Tso WW, Adler J (1974) Negative Chemotaxis in Escherichia coli. J Bacteriol 118: 560–576PubMedGoogle Scholar
  19. Zhulin IB, Armitage JP (1993) Motility, chemokinesis, and methylation-independent Chemotaxis in Azospirillum brasilense. J Bacteriol 175: 952–958PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Igor B. Zhulin
    • 1
  • Lisa E. Sarmiento
    • 1
  • Barry L. Taylor
    • 1
  1. 1.Department of Microbiology and Molecular GeneticsLoma Linda UniversityLoma LindaUSA

Personalised recommendations