Molecular Study of the Interaction of Azospirillum lipoferum with Wheat Germ Agglutinin

  • E. Karpati
  • P. Kiss
  • M. Afsharian
  • F. Marini
  • S. Buglioni
  • I. Fendrik
  • M. Del Gallo
Conference paper
Part of the NATO ASI Series book series (volume 37)

Abstract

Capsular receptors of Azospirillum lipoferum SpBrl7 involved in interaction with wheat germ agglutinin have been studied. In the capsular fraction of bacteria two putative receptors were detected, a 25 kDa protein/glycoprotein and a complex of about 100 kDa. No attachment of wheat germ agglutinin to the corresponding capsular components was found in the wheat germ agglutinin-nonbinding mutant of A. lipoferum, as expected. The Tn2706 transposon insertion of the mutant has been localized.

Keywords

Azospirillum wheat germ agglutinin lectin wheat germ agglutinin receptor glycoprotein polysaccharides cell capsule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonyuk LP, Fomina OR, Galkin MA, Ignatov VV (1993) The effect of wheat germ agglutinin on dinitrogen fixation, glutamine synthetase activity and ammonia excretion in Azospirillum brasilense Sp245. FEMS Microbiol Lett 110: 285–290CrossRefGoogle Scholar
  2. Bohlool BB, Schmidt EL (1974) Lectins: a possible basis for specificity in the Rhizobium-legume root nodule symbiosis. Science 185: 269–271PubMedCrossRefGoogle Scholar
  3. Chochola J, Fabre C, Bellan C, Luis J, Bourgerie S, Abadie B, Champion S, Marvaldi J, El Battari A (1993) Structural and functional analysis of the human vasoactive intestinal peptide receptor glycosylation. J Biol Chem 268: 2312–2318PubMedGoogle Scholar
  4. Dazzo FB, Hubbell DH (1975) Cross reactive antigens and lectin as determinants of symbiotic specificity in the Rhizobium-clover association. Appl Microbiol 30: 1017–1033PubMedGoogle Scholar
  5. Del Gallo M, Negi M, Neyra CA (1989) Calcofluor- and lectin binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum. J Bacteriol 171: 3504–3510PubMedGoogle Scholar
  6. Del Gallo M, Haegi A (1990) Characterization and quantification of exocellular polysaccharides in Azospirillum brasilense and Azospirillum lipoferum. Symbiosis 9: 155–161Google Scholar
  7. Del Gallo M, Fendrik I (1994) The Rhizosphere and Azospirillum. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton London Tokyo, pp 57–75Google Scholar
  8. Figurski DH, Helinski DR (1979) Replication of an origen-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76: 1648–1652PubMedCrossRefGoogle Scholar
  9. Konnova SA, Makarov OE, Skvortsov IM, Ignatov VV (1994) Isolation, fractionation and some properties of polysaccharides produced in a bound form by Azospirillum brasilense and their possible involvement in Azospirillum-wheat root interactions. FEMS Microbiol Lett 118: 93–100CrossRefGoogle Scholar
  10. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685PubMedCrossRefGoogle Scholar
  11. Lowry OH, Rosebrough MJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193: 265–275PubMedGoogle Scholar
  12. Miskind M, Keegstra K, Palevitz BA (1980) Distribution of wheat germ agglutinin in young plants. Plant Physiol 66: 950–955CrossRefGoogle Scholar
  13. Okon Y, Albrecht SL, Bums RH (1976) Factors affecting growth and nitrogen fixation of Spirillum lipoferum. J Bacteriol 127: 1248–1254PubMedGoogle Scholar
  14. Olasz F, Stalder R, Arber W (1993) Formation of the tandem repeat (IS30)2 and its role in IS30-mediated transpositional DNA rearrangements. Mol Gen Genet 239: 177–187PubMedGoogle Scholar
  15. Ruvkun GB, Ausubel FM (1981) A general method for site-directed mutagenesis in prokaryotes. Nature 289: 85–88PubMedCrossRefGoogle Scholar
  16. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor USAGoogle Scholar
  17. Stalder R, Arber W (1989) Characterization of in vitro constructed IS30-flanked transposons. Gene 76: 187–193PubMedCrossRefGoogle Scholar
  18. Wright CS (1980) Location of the N-acetyl-D-neuraminic acid binding site in wheat germ agglutinin. J Mol Biol 139: 53–60PubMedCrossRefGoogle Scholar
  19. Wright CS (1992) Crystal structure of a wheat germ agglutinin/glycophorin-sialoglycopeptide receptor complex. J Biol Chem 267: 14345–14352PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • E. Karpati
    • 1
  • P. Kiss
    • 2
  • M. Afsharian
    • 1
  • F. Marini
    • 3
  • S. Buglioni
    • 3
  • I. Fendrik
    • 4
  • M. Del Gallo
    • 5
  1. 1.Department of BiotechnologyGödöllö University of Agricultural SciencesGödöllöHungary
  2. 2.Department of Chemistry and BiochemistryGödöllö University of Agricultural SciencesGödöllöHungary
  3. 3.Biotechnology and Agriculture SectorENEA CasacciaRomaItaly
  4. 4.Institute of BiophysicsUniversity of HannoverHannoverGermany
  5. 5.DISTAAM, Faculty of AgricultureUniversity of MoliseCampobassoItaly

Personalised recommendations