Skip to main content

Membrane Lipids and Circadian Rhythms in Neurospora crassa

  • Chapter
Book cover Membranes and Circadian Rythms

Summary

The possibility that membranes are involved in circadian rhythmicity in the ascomycete fungus Neurospora crassa is discussed. Neurospora is an ideal organism for testing this possibility; knowledge of its biochemistry and genetics is substantial, and mutants affecting circadian rhythms and/or lipid biochemistry are available.

The Neurospora circadian oscillator receives input on temperature and illumination from the environment. Evidence suggests that the Neurospora blue-light photoreceptor may be membrane-localized. Studies using Neurospora inositol and choline auxotrophs, however, appear to rule out hydrolysis of phospholipids by a phospholipase C or a phospholipase D in transduction of light signal information from the photoreceptor to the oscillator. The mechanism of temperature signal transduction remains unknown, but temperature-induced changes in membrane properties could play a role.

Involvement of membrane lipids in the mechanism of the oscillator itself is suggested by correlation of lengthened period with abnormal membrane composition in the Neurospora mutants cel, prd-1 and chol-1. The cel mutant is blocked in fatty acid synthesis; both the period of its rhythm and the fatty acid composition of its membranes are sensitive to environmental conditions, no simple relationship between its membrane composition and its period length has yet been described. The chol-1 mutant is also altered in lipid synthesis; it is a choline auxotroph unable to synthesize phosphatidylcholine unless choline is supplied. The prd-1 mutant was isolated on the basis of long circadian period; it has an abnormal membrane fatty acid composition, although its primary biochemical lesion is unknown.

The levels of linoleic and linolenic acid in the membranes of Neurospora vary with a circadian rhythm, and similar rhythms in fatty acid composition have been reported in a number of species of plants and animals. These rhythms could be part of the circadian oscillator mechanism, or part of an ouput pathway from the circadian oscillator.

Temperature compensation of membrane fluidity by enzymatic alteration of membrane lipid composition may play a role in the temperature compensation of rhythmicity, and this possibility is discussed. Temperature compensation of rhythmicity appears to be lost in three different mutants of Neurospora: cel, chol-1, and null alleles of frq. The cel and chol-1 mutants are defective in lipid synthesis, and are likely to show abnormal adjustment of membrane composition with temperature. The frq locus was originally identified on the basis of altered period length. There is no evidence for defective lipid metabolism in frq mutants, but such a defect has not been ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DAG:

sn-1,2-diacylglycerol

Ins(1,4,5)P3:

myo-inositol 1,4,5-trisphosphate

PtdCho:

phosphatidylcholine

PtdEtn:

phosphatidylethanolamine

PtdIns:

phosphatidylinositol

PtdIns(4,5)P 2 :

phosphatidylinositol 4,5-bisphosphate

PtdOH:

phosphatidic acid. Fatty acids are represented in the text by x y notation in which x indicates the total number of carbons in the acyl chain and y indicates the nimber of double bonds. Positions of the double bonds are indicated by the standard device of using superscripts to a Greek letter delta preceding the x:y notation. The delta prefix is ommitted for the major unsaturated fatty acids of Neurospora: Δ9-18:1 (oleic acid), Δ9,12-18:2 (linoleic acid) and Δ9,12,15-18:3 (α-linolenic acid). The major saturated fatty acids of Neurospora are 16:0 (palmitic acid) and 18:0 (stearic acid).

References

  • Aaronson LR, Martin CE (1983) Temperature-induced modifications of glycosphingolipids in plasma membranes of Neurospora crassa. Biochim Biophys Acta 735: 252–258

    Article  PubMed  CAS  Google Scholar 

  • Aaronson LR, Johnston AM, Martin CE (1982) The effects of temperature acclimation on membrane sterols and phospholipids of Neurospora crassa. Biochim Biophys Acta 713: 456–462

    PubMed  CAS  Google Scholar 

  • Actis Dato SM, Catala A, Brenner RR (1973) Circadian rhythm of fatty acid desaturation in mouse liver. Lipids 8: 1–6

    Article  Google Scholar 

  • Adamich M (1976) Membrane circadian rhythms in Gonyaulax polyedra. Thesis, University of California, Santa Barbara

    Google Scholar 

  • Aronson BD, Johnson KA, Dunlap JC (1994a) Circadian clock locus frequency: protein encoded by a single open reading frame defines period length and temperature compensation. Proc Natl Acad Sci USA 91: 7683–7687

    Article  PubMed  CAS  Google Scholar 

  • Aronson BD, Johnson KA, Loros JJ, Dunlap JC (1994b) Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science 263: 1578–1584

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1987) Inositol triphosphate and diacylglycerol: Two interacting second messengers. Ann Rev Biochem 56: 159–193

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1989) Neural and developmental actions of lithium: A unifying hypothesis. Cell 59: 411–419

    Article  PubMed  CAS  Google Scholar 

  • Billah MM, Anthes JC (1990) The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J 269: 281–291

    PubMed  CAS  Google Scholar 

  • Borgeson CE, Bowman BJ (1985) Blue light-reducible cytochromes in membrane fractions from Neurospora crassa. Plant Physiol 78: 433–437

    Article  PubMed  CAS  Google Scholar 

  • Borgeson CE, Bowman BJ (1990) Mutations that affect circadian rhythms in Neurospora crassa can alter the reduction of cytochromes by blue light. J Biol Rhythms 5: 291–301

    Article  PubMed  CAS  Google Scholar 

  • Brody S, Forman L (1980) Interactions between exogenous unsaturated fatty acids and mitochondria in Neurospora crassa. Abstr Ann Mtg Amer Soc Microbiol 1980: 157

    Google Scholar 

  • Brody S, Martins SA (1979) Circadian rhythms in Neurospora crassa: effects of unsaturated fatty acids. J Bacteriol 137: 912–915

    CAS  Google Scholar 

  • Brody S, MacKenzie L, Chuman L (1987) Circadian rhythms in Neurospora crassa: the effects of mitochondrial mutations and inhibitors. Genetics 116: s30

    Google Scholar 

  • Brody S, Coté GG, Germain J (1989) Circadian rhythms in Neurospora crassa: the effects of increased mitochondrial amounts and metabolism. J Cell Biol 107: 348a

    Google Scholar 

  • Browse J, Roughan PG, Slack CR (1981) Light control of fatty acid synthesis and diurnal fluctuations of fatty acid composition in leaves. Biochem J 196: 347–354

    PubMed  CAS  Google Scholar 

  • Cossins AR, Raynard RS (1987) Adaptive responses of animal cell membranes to temperature. In: Bowler K, Fuller BJ (eds) Temperature and Animal Cells. Company of Biologists, Cambridge, pp 95–111

    Chapter  Google Scholar 

  • Coté GG (1986) Circadian rhythms in Neurospora crassa: studies on fatty acid metabolism. Ph.D. Thesis, University of California, San Diego

    Google Scholar 

  • Coté GG, Brody S (1987a) Circadian rhythms in Neurospora crassa: a clock mutant, prd-1, is altered in membrane fatty acid composition. Biochim Biophys Acta 904: 131–139

    Article  PubMed  Google Scholar 

  • Coté GG, Brody S (1987b) Circadian rhythms in Neurospora crassa: membrane composition of a mutant defective in temperature compensation. Biochim Biophys Acta 898: 23–36

    Article  PubMed  Google Scholar 

  • de Gomez Dumm INT, de Alaniz MJT, Brenner RR (1984) Daily variations of the biosynthesis and composition of fatty acids in rats fed complete and fat-free diets. Lipids 19: 91–95

    Article  PubMed  Google Scholar 

  • Dharmananda (1980) Studies on the Circadian clock of Neurospora crassa: light-induced phase shifting. Thesis, University of California, Santa Cruz

    Google Scholar 

  • Díaz-Muñoz M, Hernández-Muñoz R, Suárez J, Chagoya de Sánchez V (1985) Day-night cycle of lipid peroxidation in rat cerebral cortex and their relationship to the glutathione cycle and superoxide dismutase activity. Neuroscience 16: 859–863

    Article  PubMed  Google Scholar 

  • Dunlap JC (1993) Genetic analysis of circadian clocks. Annu Rev Physiol 55: 683–728

    Article  PubMed  CAS  Google Scholar 

  • Dunlap JC, Feldman JF (1988) On the role of protein synthesis in the circadian clock of Neurospora crassa. Proc Natl Acad Sci USA 85: 1096–1100

    Article  PubMed  CAS  Google Scholar 

  • Edmunds LN Jr. (1988) Cellular and Molecular Bases of Biological Clocks. Springer-Verlag, New York.

    Google Scholar 

  • Elovson J (1975) Purification and properties of the fatty acid synthetase complex from Neurospora crassa, and the nature of the fas’ mutation. J Bacteriol 124: 524–533

    PubMed  CAS  Google Scholar 

  • Engelmann W, Schrempf M (1980) Membrane models for circadian rhythms. Photochem Photobiol Rev 15: 49–86

    Google Scholar 

  • Feldman JF (1982) Genetic approaches to circadian clocks. Ann Rev Plant Physiol 33: 583–608

    Article  CAS  Google Scholar 

  • Feldman JF, Pierce SB, Brown D (1986) Temperature compensation in circadian clock mutants of Neurospora. Plant Physiol 80 (suppl): 92

    Google Scholar 

  • Gardner GF (1979) Oscillations of fatty acids in Phaseolus: implications for a membrane theory of biological rhythms. Thesis, Yale University, New Haven

    Google Scholar 

  • Gardner GF, Feldman JF (1981) Temperature compensation of circadian period length in clock mutants of Neurospora crassa. Plant Physiol 68: 1244–1248

    Article  PubMed  CAS  Google Scholar 

  • Gardner GF, Galston AW (1977) Fatty acids and circadian rhythms in Phaseolus. Plant Physiol 59 (Suppl.): 30

    Article  Google Scholar 

  • Gooch VD, Wehseler RA, Gross CG (1994) Temperature effects on the resetting of the phase of the Neurospora circadian rhythm. J Biol Rhythms 9: 83–94

    Article  PubMed  CAS  Google Scholar 

  • Graber R, Sumida C, Nunez EA (1994) Fatty acids and cell signal transduction. J Lipid Médiat 9: 91–116

    CAS  Google Scholar 

  • Harwood JL (1983) Adaptive changes in the lipids of higher-plant membranes. Biochem Soc Trans 11: 343–346

    PubMed  CAS  Google Scholar 

  • Henry SA, Keith AD (1971) Saturated fatty acid requirer of Neurospora crassa. J Bacteriol 106: 174–182

    PubMed  CAS  Google Scholar 

  • Hubbard SC, Brody S (1975) Glycerophospholipid variation in choline and inositol auxotrophs of Neurospora crassa. Internal compensation among zwitterionic and anionic spcies. J Biol Chem 250: 7173–7181

    PubMed  CAS  Google Scholar 

  • Jerebzoff S, Vanden Driessche T (1983) Rhythme circadien de la teneur en acides gras dans la cellule entière et les chloroplastes d’Acetabularia meditteranea. C R Acad Sci 296: 319–322

    CAS  Google Scholar 

  • Johnston AM, Aaronson LR, Martin CE (1982) The effects of altered levels of phosphatidylcholine and phosphatidylethanolamine on fatty acid desaturase activity and sterol metabolism during temperature acclimation in a choline auxotroph of Neurospora crassa. Biochim Biophys Acta 713: 512–518

    PubMed  CAS  Google Scholar 

  • Juretic D (1977) The effect of phosphatidylcholine depletion on biochemical and physical properties of a Neurospora crassa membrane mutant. Biochim Biophys Acta 469: 137–150

    Article  PubMed  CAS  Google Scholar 

  • Klemm E, Ninnemann H (1978) Correlation between absorbance changes and a physiological response induced by blue light in Neurospora. Photochem Photobiol 28: 227–230

    Article  Google Scholar 

  • Lakin-Thomas PL (1992) Phase resetting of the Neurospora crassa circadian oscillator: effects of inositol depletion on sensitivity to light. J Biol Rhythms 7: 227–239

    Article  PubMed  CAS  Google Scholar 

  • Lakin-Thomas PL (1993a) Effects of inositol starvation on the levels of inositol phosphates and inositol lipids in Neurospora crassa. Biochem J 292: 805–811

    PubMed  CAS  Google Scholar 

  • Lakin-Thomas PL (1993b) Evidence against a direct role for inositol phosphate metabolism in the circadian oscillator and the blue-light signal transduction pathway in Neurospora crassa. Biochem J 292: 813–818

    PubMed  CAS  Google Scholar 

  • Lakin-Thomas PL (1995) Disruption of the Neurospora crassa circadian oscillator by choline depletion. Submitted.

    Google Scholar 

  • Lakin-Thomas PL, Brody S (1985a) Circadian rhythms in Neurospora crassa: interactions between clock mutations. Genetics 109: 49–66

    PubMed  CAS  Google Scholar 

  • Lakin-Thomas PL, Brody S (1985b) A pantothenate derivative is covalently bound to mitochondrial proteins in Neurospora crassa. Eur J Biochem 146: 141–147

    Article  PubMed  CAS  Google Scholar 

  • Lakin-Thomas PL, Coté GG, Brody S (1990) Circadian rhythms in Neurospora crassa: biochemistry and genetics. Crit Rev Microbiol 17: 365–416

    Article  PubMed  CAS  Google Scholar 

  • Lakin-Thomas PL, Brody S, Coté GG (1991) Amplitude model for the effects of mutations and temperature on period and phase resetting of the Neurospora circadian oscillator. J Biol Rhythms 6: 281–297

    Article  PubMed  CAS  Google Scholar 

  • Lecharny A, Tremolières A, Wagner E (1990) Correlation between the endogenous circadian rhythmicity in growth rate and fluctuations in oleic acid content in expanding stems of Chenopodium rubrum L. Pianta 182: 211–215

    CAS  Google Scholar 

  • Liscovitch M (1992) Crosstalk among multiple signal-activated phospholipases. Trends Biochem Sci 17: 393–399

    Article  PubMed  CAS  Google Scholar 

  • Liscovitch M, Cantley LC (1994) Lipid second messengers. Cell 77: 329–334

    Article  PubMed  CAS  Google Scholar 

  • Loros JJ, Feldman JF (1986) Loss of temperature compensation of circadian period length in the frq-9 mutant of Neurospora crassa. J Biol Rhythms 1: 187–198

    Article  PubMed  CAS  Google Scholar 

  • Luck DJL (1964) The influence of precursor pool size on mitochondrial composition in Neurospora crassa. J Cell Biol 24: 445–460

    Article  Google Scholar 

  • Lynch DV, Thompson GA Jr. (1984) Retailored lipid molecular species: a tactical mechanism for modulating membrane properties. Trends Biochem Sci 9: 442–445

    Article  CAS  Google Scholar 

  • Lyudnikova TA, Chernysheva EK, Bezzubov AA, Kritsky MS (1989) Possible relationship of cryptochrome photoreceptor to the fatty acid desaturation complex. Orig Life Evol Biosph 19: 422

    Article  Google Scholar 

  • Maresca B, Cossins AR (1993) Fatty feedback and fluidity. Nature 365: 606–607

    Article  PubMed  CAS  Google Scholar 

  • Martin CE, Johnston AM (1983) Changes in fatty acid distribution and thermotropic properties of phospholipids following phosphatidylcholine depletion in a choline- requiring mutant of Neurospora crassa. Biochim Biophys Acta 730: 10–16

    Article  PubMed  CAS  Google Scholar 

  • Martin CE, Siegel D, Aaronson LR (1981) Effects of temperature acclimation on Neurospora phospholipids. Fatty acid desaturation appears to be a key element in modifying phospholipid fluid properties. Biochim Biophys Acta 665: 399–407

    PubMed  CAS  Google Scholar 

  • Mattern DL (1985a) Preparation of functional group analogs of unsaturated fatty acids and their effects on the circadian rhythm of a fatty-acid-deficient mutant of Neurospora crassa. Chem Phys Lipids 37: 297–306

    Article  PubMed  CAS  Google Scholar 

  • Mattern DL (1985b) Unsaturated fatty acid isomers: effects on the circadian rhythm of a fatty-acid-deficient Neurospora crassa mutant. Arch Biochem Biophys 237: 402–407

    Article  PubMed  CAS  Google Scholar 

  • Mattern D, Brody S (1979) Circadian rhythms in Neurospora crassa: effects of saturated fatty acids. J Bacteriol 139: 977–983

    PubMed  CAS  Google Scholar 

  • Mattern DL, Forman LR, Brody S (1982) Circadian rhythms in Neurospora crassa: a mutation affecting temperature compensation. Proc Natl Acad Sci USA 79: 825–829

    Article  PubMed  CAS  Google Scholar 

  • Mikolajczyk S, Brody S (1990) De novo fatty acid synthesis mediated by ACP in Neurospora crassa mitochondria. Eur J Biochem 187: 431–437

    Article  PubMed  CAS  Google Scholar 

  • Murphy DJ, Stumpf PK (1980) Polyunsaturated fatty acid biosynthesis in cotyledons from germinating and developing Cucumis sativus L. seedlings. Plant Physiol 66: 660–665

    Article  PubMed  CAS  Google Scholar 

  • Nakashima H (1983) Is the fatty acid composition of phospholipids important for the function of the circadian clock in Neurospora crassa? Plant Cell Physiol 24: 1121–1127

    CAS  Google Scholar 

  • Nakashima H (1987) Comparison of phase shifting by temperature of wild type Neurospora crassa and the clock mutant, frq-7. J Interdiscipl Cycle Res 18: 1–8

    Article  Google Scholar 

  • Njus D, Sulzman FM, Hastings JW (1974) Membrane model for the circadian clock. Nature 248: 116–120

    Article  PubMed  CAS  Google Scholar 

  • Oda K, Hasunuma K (1994) Light signals are transduced to the phosphorylation of 15 kDa proteins in Neurospora crassa. FEBS Lett 345: 162–166

    Article  PubMed  CAS  Google Scholar 

  • Prior SL, Robson GD, Trinci APJ (1994) Phosphoinositide turnover does not mediate the effects of light or choline, or the relief of derepression of glucose metabolism in filamentous fungi. Mycol Res 98: 291–294

    Article  CAS  Google Scholar 

  • Rensing L, Bos A, Kroeger J, Cornelius G (1987) Possible link between circadian rhythm and heat shock response in Neurospora crassa. Chronobiol Intl. 4: 543–549

    Article  CAS  Google Scholar 

  • Rensing L, Kohler W, Gebauer G, Rallies A (1993) Protein phosphorylation and circadian rhythms. In: Battey NH, Dickinson HG, Hetherington AM (eds) Post-translational Modifications in Plants. Cambridge University Press, Cambridge, pp 171–185

    Chapter  Google Scholar 

  • Rikin A, Dillwith JW, Bergman DK (1993) Correlation between the circadian rhythm of resistance to extreme temperatures and changes in fatty acid composition in cotton seedlings. Plant Physiol 101: 31–36

    PubMed  CAS  Google Scholar 

  • Roeder PE, Sargent ML, Brody S (1982) Circadian rhythms in Neurospora crassa: oscillations in fatty acids. Biochemistry 21: 4909–4916

    Article  PubMed  CAS  Google Scholar 

  • Scarborough GA, Nyc JF (1967) Methylation of ethanolamine phosphatides by microsomes from normal and mutant strains of Neurospora crassa. J Biol Chem 242: 238–242

    PubMed  CAS  Google Scholar 

  • Schlame M, Brody S, Hostetler KY (1993) Mitochondrial cardiolipin in diverse eukaryotes. Comparison of biosynthetic reactions and molecular acyl species. Eur J Biochem 212: 727–735

    Article  PubMed  CAS  Google Scholar 

  • Scholiibbers HG, Taylor W, Rensing L (1984) Are membrane properties essential for the circadian rhythm of Gonyaulax? Am J Physiol 247: R250–R256

    Google Scholar 

  • Thompson GA Jr. (1983) Mechanisms of homeoviscous adaptation in membranes. In: Cossins AR, Sheterline P (eds) Cellular Acclimatisation to Environmental Change. Cambridge University, Cambridge, pp 33–53 (Soc Exp Biol Symp, Seminar Ser, vol 17 )

    Google Scholar 

  • Vigh L, Los DA, Horvath I, Murata N (1993) The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc Natl Acad Sci USA 90: 9090–9094

    Article  PubMed  CAS  Google Scholar 

  • Vokt JP, Brody S (1985) The kinetics of changes in the fatty acid composition of Neurospora crassa lipids after a temperature increase. Biochim Biophys Acta 835: 176–182

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coté, G.G., Lakin-Thomas, P.L., Brody, S. (1996). Membrane Lipids and Circadian Rhythms in Neurospora crassa . In: Vanden Driessche, T., Guisset, JL., Petiau-de Vries, G.M. (eds) Membranes and Circadian Rythms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79903-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79903-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60101-2

  • Online ISBN: 978-3-642-79903-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics