Advertisement

The Plasma Membrane of Acetabularia: an Integrating Function Regulated by Circadian Rhythmicity

  • T. Vanden Driessche
  • J.-L. Guisset
  • G. M. Petiau-de Vries
  • T. Gaspar

Summary

Numerous receptors and structures in the plasma membrane allow the cell to sense environmental signals as well as internal status and to adjust its own activities. We review the circadian rhythms affecting the Acetabularia PM, both from direct and indirect experimental evidence. We consider the CR in bioelectric properties, fatty acid composition and glycosylation degree. We indicate that changes in the phosphorylation degree might occur. The photosensitivity of growth and cap morphogenesis is modulated by a CR, as well as (delayed) morphogenesis after a SHAM treatment. The transducing chain, activated by the photoreceptor is also oscillating (the IP3, Ca2+-calmodulin pathway). An NADP(H) oxido-reductase is located in the PM and presumably related to the redox state of the non chloroplastic pyridine nucleotides. The cytoplasmic thioredoxin h, an important redox regulator has been isolated in Acetabularia, but its low amount prevents analyses along the 24 h cycle. Finally, the system peroxidases/ascorbic acid was shown to be present, but, for similar reasons, it has not been analyzed during the daily cycle. Three phytohormones have been studied: IAA, ABA and ethylene. All three induce time-dependent morphogenetic responses. The metabolism of ethylene itself is highly regulated by a CR. The numerous responses from the membrane act in a concerted manner, owing to the integrating function of the PM and the interrelations of the cellular pathways. We propose that, in addition, circadian rhythmicity imposes a regulatory control on the activities at the level of the PM.

Keywords

Circadian Rhythm Indole Acetic Acid Plant Plasma Membrane Circadian Change Salicylhydroxamic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ABA

abscisic acid

CaM

calmodulin

CDPK

Ca2+-dependent phosphokinase

CR

circadian rhythm

CT

circadian time (time 0 is the transition time from dark to light period)

chlpl envel

chloroplast envelope

CW

cell wall

DD

constant dark

DAG

diacylglycerol

6-DMAP

6-dimethylaminopurine

ER

endoplasmic reticulum

IAA

indole-3-acetic acid

IP

inositol 4-monophosphate

IP2

inositol 1,4-bisphosphate

IP3

inositol 1,4,5-trisphosphate

IPS3

triphosphothioate

LD

light-dark conditions

LL

constant light

LOX

lipoxygenase

PIP2

phosphatidyl inositol 4,5-bisphosphate

PK

Phosphokinase

PLA2

phospholipase A2

PLC

phospholipase C

PM

plasma membrane

R

receptor

SHAM

salicylhydroxamic acid

ser/thr

serine/threonine symp, symport

Th-S2

thioredoxin in its reduced form

thylak

thylakoid

tr

transporter

tyr ki

tyrosineprotein kinase

Vac

vacuole

X-Gal

5-bromo-4-chloro3-indolyl-beta-D galactopyranoside

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. André B,Scherer GFE(1989) Stimulation by auxin of phospholipase A in membrane vesicles from an auxin sensitive tissue is mediated by an auxin receptor. Planta 185:209–214Google Scholar
  2. Azard H(1991) Blauw licht perceptie by hogere planten.Studies met betrekking tot ATPase activiteit en redox component in de plasmamembraan. Thesis Universiteit AntwerpenGoogle Scholar
  3. Berridge MJ(1993) Inositol trisphosphate and calcium signalling. Nature 361: 315–325PubMedCrossRefGoogle Scholar
  4. Berridge MJ,Irvine RF(1989) Inositol phosphates and cell signalling. Nature 341:197–204PubMedCrossRefGoogle Scholar
  5. Blatt MR,Thiel G(1993) Hormonal control of ion channel gating. Ann Rev Plant Physiol Plant Molec Biol 44:543–567CrossRefGoogle Scholar
  6. Castillo FJ,Cotton G,Kevers C,Greppin H,Gaspar T,Vanden Driessche T(1986) Changes in ascorbic acid content and ascorbate peroxidase activity during the development of Acetabularia mediterranea. Differentiation 33:17–23CrossRefGoogle Scholar
  7. Caubergs R,Vanden Driessche T,De Greef J(1984) A light-inducible cytochrome b reduction in the green alga Acetabularia. In: Senger H(ed) Blue light effects in Biological Systems. Springer Verlag Berlin Heidelberg: 173–176CrossRefGoogle Scholar
  8. Chaignon M,Van Langendonckt A,Vanden Driessche T(1993a) IP3 in Acetabularia.LEvidence for IP3 in A. mediterranea. Arch Internat Physiol Biochim Biophys 101:3CrossRefGoogle Scholar
  9. Chaignon M,Van Langendonckt A,Vanden Driessche T(l993b) DP3 in Acetabularia:II Separation of phosphoinositides. Arch Internat Physiol Biochim Biophys 101:4Google Scholar
  10. Chaignon M.Vanden Driessche T(1993) IP3in Acetabularia IV:Evidence for its physiological role as studied by the effects of lindane. Arch Internat Physiol Biochim Biophys 101:4Google Scholar
  11. Clauss H(1977) Photomorphoses in marine algae. Book of Abstracts Ann Europ Symp Photomorphogenesis Bet Dagan N°16Google Scholar
  12. Comolli J,Taylor W,Hastings JW(1994) An inhibitor of protein phosphorylation stops the circadian oscillator and blocks light-induced phase shifting in Gonyaulax polyedra. J Biol Rhythms 9:13–26PubMedCrossRefGoogle Scholar
  13. Cooke DT,Burden RS(1990) Lipid modulation of plasma membrane-bound ATPases. Physiol Plant 78:153–159CrossRefGoogle Scholar
  14. Cotton G,Vanden Driessche T(1987) Identification of calmodulin in Acetabularia, its distribution and physiological significance. J Cell Biol 87:337–347Google Scholar
  15. Ding JP,Pickard BG(1991) Activation of a Ca2+ channel by ABA and resultant inhibition of a K+ channel by Ca2+ in excised plasmalemma of onion epidermis. Plant Physiol 96 suppl. 1:137CrossRefGoogle Scholar
  16. Geer van der P,Hunter T,Lindberg RA(1994) Receptor protein- tyrosine kinases and their signal transduction pathways. Ann Rev Cell Biol 10:251–337PubMedCrossRefGoogle Scholar
  17. Glory M,Vanden Driessche T(1985) NAD+-induced ultrastructural circadian variations in the chloroplasts of Acetabularia.In Bonotto S,Cinelli F,Bilhau R (eds) Acetabularia 1984 Belgian Nuclear Center Mol: 267–278Google Scholar
  18. Goldberg RB,Paiva de G,Yadegari R(1994) Plant Embiyogenesis: zygote to seed. Science 266:605–614PubMedCrossRefGoogle Scholar
  19. Goodwin BC and Pateromichelakis S(1979) The role of electric fields, ions and the cortex in the morphogenesis of Acetabularia. Planta 145:427–435CrossRefGoogle Scholar
  20. Gradmann D(1976) “Metabolic” action potentials in Acetabularia. J Membrane Biol 29:23–45CrossRefGoogle Scholar
  21. Grignon C,Sentenac H(1991) pH and ionic conditions in the apoplast. Ann Rev Plant Physiol Plant Molec Biol 42:103–128CrossRefGoogle Scholar
  22. Henry P-E,Bourgeois P,Baeckeland P,Legros F(1979) Relationships between metabolism of carbohydrates and insulin fixation to Acetabularia in LD conditions. In: Bonotto S,Kefeli V, Puiseux-Dao S (eds) Developmental Biology of Acetabularia. Elsevier /North Holland Biomed. Press Amsterdam New York Oxford: 283–294Google Scholar
  23. Horemans N,Asard H,Caubergs R(1993) Ascorbate free radicals possibly act as an electron acceptor to the plant plasmamembrane beta-type cytochrome. Arch Internat Biochim Biophys (in press)Google Scholar
  24. Horemans N,Asard H,Caubergs R (1994) The role of ascorbate free radical as an electron acceptor to cytochrome b-mediated trans-plasma membrane electron transport for higher plants. Plant Physiol 104: 1455–1458PubMedGoogle Scholar
  25. Jerebzoff S,Vanden Driessche T(1983) Rythme circadien de la teneur en acides gras dans la cellule entière et les chloroplastes.CR Acad Sc Paris 296: 319–322Google Scholar
  26. Jones AM(1994) Auxin-binding proteins.Ann Rev Plant Physiol Plant Molec Biol 45:393–420CrossRefGoogle Scholar
  27. Kevers C,Vanden Driessche T,Gaspar T(1986) An ethylene-forming system in Acetabularia. Relationship with development. Arch Internat Physiol Biochim 94: 51Google Scholar
  28. Kevers C,Vanden Driessche T,Gaspar T(1989) Relationship between ethylene and ethane production by whole Acetabularia mediterranea cells and by microsomal fractions. Saussurea 19:121–123Google Scholar
  29. Klämt D(1990) A view about the function of auxin-binding proteins at plasma membrane.Plant Molec Biol 14:1045–1050CrossRefGoogle Scholar
  30. Klämt D,Viola G,Barbier-Brigoo H,Guern J(1990) Auxin-binding protein –localization and function. Physiol Plant 79:A32Google Scholar
  31. Kof E,Kefeli V (1979) Growth substances in Acetabularia.In: Bonotto S,Kefeli V,Puiseux- Dao S (eds) Developmental Biology of Acetabularia. Elsevier/North Holland Biomedical Press pp 45–47.Google Scholar
  32. Kosower NS,Kosower EM(1987) Thiol labeling with monobromobimanes. In: Jacoby WB,Griffith OW (eds) Methods in Enzymology Academic Press San Diego. Vol 143: 76–84.Google Scholar
  33. Legros F,Saines M,Conard V. (1973). Action du 3′:5′-AMP cyclique et de la théophylline sur la respiration d’Acetabularia mediterranea. Arch Internat Physiol Biochim 81: 164–166.CrossRefGoogle Scholar
  34. Legros F,Uytdenhoef P, Dumont I, Hanson B, Jeanmart J,Massant B Conard V(1975). Specific binding of insulin to the unicellular alga Acetabularia mediterranea. Protoplasma 86: 119–134.PubMedCrossRefGoogle Scholar
  35. Leshem YY(1987) Membrane phospholipid catabolism and calcium activity in the control of plant senescence. Physiol Plant 69: 551–559CrossRefGoogle Scholar
  36. Leshem YY(1992) Plant Membranes.Kluwer Academic Publishers Dordrecht Boston London pp 266Google Scholar
  37. Leung J,Bouvier-Durand M,Morris P-C,Guerrier D, Chefdor F, Giraudat J(1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264: 1448–1452.PubMedCrossRefGoogle Scholar
  38. Martiny-Baron G,Scherer GFE(1989) Phospholipid-stimulated protein kinase in plants. J Biol Chem 264:18052–18059PubMedGoogle Scholar
  39. Meyer K,Grill E(1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264,1452–1455.PubMedCrossRefGoogle Scholar
  40. Moller IM, Crane FL(1990) Redox processes in the plasma membrane. In:Larson C,Moller IM (eds)The plant plasma membrane. Springer Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong pp93–126Google Scholar
  41. Mummert H, Gradmann D(1976) Voltage dependent potassium fluxes and the significance of action potentials in Acetabularia.Biochim Biophys Acta 443:443–450PubMedCrossRefGoogle Scholar
  42. Napier RM,Venis MA(1991) From auxin-binding proteins to plant hormone receptor? Trends Biochemical Science 16:72–75.CrossRefGoogle Scholar
  43. Novak B,Bentrup FW(1972) An electrophysiological study of regeneration in Acetabularia mediterranea. Planta 108:227–244.CrossRefGoogle Scholar
  44. Novak B,Sironval C(1976) Circadian rhythm of the transcellular current in regenerating enucleated posterior stalk segments of Acetabularia mediterranea. Plant Sci Lett 6:273–283CrossRefGoogle Scholar
  45. Ottoline HM,Lincoln CA,Timpte C,Lammer D,Turner J,Estelle M(1993). Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin activating enzyme El. Nature 364: 161–164.CrossRefGoogle Scholar
  46. Palme K,Schell J(1991) Auxin receptors take shape.Current Biol 228–230Google Scholar
  47. Pause A,Belsham GJ,Gingras A-C,Donzé O,Lin T-A,Lawrence JCjr, Sonenberg N(1994) Insulin-dependent stimulation of a protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371: 762–767PubMedCrossRefGoogle Scholar
  48. Penel C,Castille FJ(1991) Peroxidases of plant plasma membranes, apoplastic ascorbate, and relation of redox activities to plant pathology. In: Crane FL,Morré DJ,Löw H (eds) Oxidoreduction at the plasma membrane: relation to growth and transport. CRC Press, Boca Raton. Vol. 2: 121–147Google Scholar
  49. Puroit S,Kumar P,Laloraya M,Bharti S and Lolaraya MM(1992) Biochim Biophys Res Commun 186:652–658CrossRefGoogle Scholar
  50. Reymond P,Short TW,Briggs WR(1992) Blue light activates a specific protein kinase in higher plants. Plant Physiol 100:655–661PubMedCrossRefGoogle Scholar
  51. Reymond P,Short TW,Briggs WR,Poff KL(1992) Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana. Proc Natl Acad Sci USA 89:4718–4721PubMedCrossRefGoogle Scholar
  52. Rubinstein B,Luster DG(1993) Plasma membrane redox activity: components and role in processes. Ann Rev Plant Physiol Plant Molecul Biol 42:107–130Google Scholar
  53. Schaewen von A,Sturm A,O’Neil J,Chrispeels MJ(1993) Isolation of a mutant Arabidopsis plant that lacks N-acetyl glucosaminyl transferase I and is unable to synthetize Golgi- modified complex N-linked glycans. Plant Physiol 102:1109–1118.CrossRefGoogle Scholar
  54. Scherer GFE,André B(1989) A rapid response to a plant hormone: auxin stimulates phospholipase A2 in vivo and in vitro. Biochem Biophys Res Commun 163:111–117PubMedCrossRefGoogle Scholar
  55. Schmid R(1984) Blue light effects on morphogenesis and metabolism in Acetabularia. In:Senger H (ed) Blue light effect in Biological systems. Springer, Heidelberg Berlin:419–432Google Scholar
  56. Schroeder JI Hedrich R(1989) Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends in Biochem Science 14:187–192CrossRefGoogle Scholar
  57. Schröder-Lorenz A,Rensing L(1987) Circadian changes in protein-synthesis rate and protein phosphorylation in cell-free extracts of Gonyaulax polyedra. Planta 170:7–13CrossRefGoogle Scholar
  58. Schulman H(1991) Serine/threonine kinases in the nervous system. Current opinion in Neurobiology 1:43–52PubMedCrossRefGoogle Scholar
  59. Shenolikar S(1994) Protein serine/threonine phosphatases-New avenues for cell regulation. Ann Rev Cell Biol 10:55–86PubMedCrossRefGoogle Scholar
  60. Siegelbaum SA(1994) Ion channel control by tyrosine phosphorylation. Current Biol 4:242–245CrossRefGoogle Scholar
  61. Short TW,Reymond P,Briggs WR(1993) A pea plasma membrane protein exhibiting blue light-induced phosphorylation retains photosensitivity following triton solubilization. Plant Physiol 101:647–655Google Scholar
  62. Stemmer P,Klee CB(1991) Serine/threonine phosphatases in the nervous system.Current Opinion in Neurobiology 1:53–64PubMedCrossRefGoogle Scholar
  63. Sussman MR(1994) Molecular analysis of proteins in the plant plasma membrane. Ann Rev Plant Physiol Plant Molecul Biol.45: 211–234CrossRefGoogle Scholar
  64. Theologis A,(1993) What a gas! Current Biology 3: 369–371.PubMedCrossRefGoogle Scholar
  65. Short TW,Reymond P,Briggs WR(1993) A pea plasma membrane protein exhibiting blue light-induced phosphorylation retains photosensitivity following triton solubilization. Plant Physiol 101:647–655PubMedGoogle Scholar
  66. Vanden Driessche T(1979) Phase-shifting effect of IAA on the photosynthetic circadian rhythm of Acetabularia. In:Bonotto S, Kefeli V,Puiseux-Dao S.Developmental Biology of Acetabularia. Elsevier pp 195–204Google Scholar
  67. Vanden Driessche T(1984) Temporal morphology and cap formation in Acetabularia- Effects of morphactin and auxin. Chronobiol internat 1:113–120.CrossRefGoogle Scholar
  68. Vanden Driessche T(1985) Circadian time-dependent effects of plant growth regulators on morphogenesis in Acetabularia. In: Rensing L, Jaeger NI. Temporal Order pp 211–212Google Scholar
  69. Vanden Driessche T(1994) Circadian rhythms in three unicellular organisms. The peculiarities of the organisms, the evidence they brought on rhythms and their specific practical problems. Outline of recent hypotheses. J Rhythm Research 25: 345–386CrossRefGoogle Scholar
  70. Vanden Driessche T,Caubergs R(1985) Inhibiting the transduction of blue light signals in Acetabularia. In:Bonotto S,Cinelli F, Billiau R (eds). Acetabularia 1984. Centre d’Energie nucléaireGoogle Scholar
  71. Vanden Driessche T,Delegher V(1977) The presence of an auxin-like substance in Acetabularia and its relation to growth and morphogenesis. In: Woodcock CLF (ed) Progress in Acetabularia Research Acad Press 287–303.Google Scholar
  72. Vanden Driessche T,Chaignon M,Potter BVL(1993) IP3 in Acetabularia III assessment of IP3 physiological role:effects of phosphothioate (IPS3). Arch Internat Physiol Biochim Biophys 101:12Google Scholar
  73. Vanden Driessche T, Cotton G,Loicq C,Caubergs R(1985) Chronobiological approach to the oscillating biochemical pathways identification involved in cap morphogenesis in Acetabularia. Arch Biol (Bruxelles) 96: 504–505.Google Scholar
  74. Vanden Driessche T,Kevers C,Collet M,Gaspar T(1988) Acetabularia and ethylene:production in relation with development,circadian rhythms in emission,and response to external application. J Plant Physiol 133:635–639Google Scholar
  75. Vanden Driessche T,Lause P,Guisset J-L,Glory M and Petiau-de Vries G(1992) Some aspects of glycoprotein metabolism in Acetabularia: spatio-temporal activity of beta-galactosidase and physiological effects of tunicamycin. J Interdiscipl Cycle Res 23:237–251CrossRefGoogle Scholar
  76. Vanden Driessche T,Petiau-de Vries G,Guisset J-L(submitted) Differentiation: Acetabularia as a model system.Google Scholar
  77. Vanden Driessche T,Verhoustraeten F,Glory M,Guisset J-L(1993). Circadian time- dependent effects exerted by abscisic acid, a phytohormone, on photosynthesis, non- chloroplast polysaccharide content and on cap formation in Acetabularia. In: Sato S,Ishida N,Ishikawa H (eds) V Internat. Colloquium on Endocytobiology and Symbiosis. Tübingen University Press pp 43–46.Google Scholar
  78. Van Langendonckt A,Vanden Driessche T(1992a) Isolation and characterization of different forms of thioredoxins from the green alga Acetabularia mediterranea identification of an NADP/thioredoxin system in the extrachloroplastic fraction. Arch Biochem Biophys (USA) 292:156–164CrossRefGoogle Scholar
  79. Van Langendonckt A, Vanden Driessche T(1992b) Changes in intracellular distribution of thiol groups during the development of Acetabularia mediterranea. J exptl Bot 43: 1643–1650CrossRefGoogle Scholar
  80. Van Langendonckt A,Vanden Driessche T(1994) Effects of blue light on thiol/disulfide ratio in relation with growth in Acetabularia. Arch Internat Physiol Biochim Biophys 102:65CrossRefGoogle Scholar
  81. Van Langendonckt A, de Solan C,Jerebzoff S,Vanden Driessche T (1991) Non chloroplastic pyridine nucleotides concentrations in Acetabularia as related with the developmental program. Circadian modulation of the concentrations. J interdiscipl Cycle Res 22: 223–236CrossRefGoogle Scholar
  82. Venis M(1985) Hormone binding sites in plants. Longman (ed), New York London, pp. 191.Google Scholar
  83. Venis M(1987) Hormone receptor sites and the study of plant development. In: Hoad GV,Lenton JR,Jackson MB, and Atkin RK (eds) Hormone action in plant development. Butterworths.London Boston Durban Singapore Sydney Toronto Wellington, pp 53–61Google Scholar
  84. Venis MA,Thomas EW,Barbier-Brigoo H,Ephritikhine G,Guern J(1990) Impermeant auxin analogues have auxin activity. Planta 182:232–235CrossRefGoogle Scholar
  85. Verhoustraeten F(1987) Effets de l’acide abscisique sur le développement de l’algue Acetabularia. Approche de la modulation circadienne régulant certains processus physiologiques et morphogénétiques. Mémoire présenté en vue de l’obtention du grade de lie. Sc.Zool. Université Libre de BruxellesGoogle Scholar
  86. Wan Y,Hasenstem KH(1993) Immunological evidence for ABA receptors in corn roots. Plant Physiol 102(1 suppl.):62Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • T. Vanden Driessche
    • 1
  • J.-L. Guisset
    • 2
  • G. M. Petiau-de Vries
    • 3
  • T. Gaspar
    • 4
  1. 1.Dept. de Biologie moléculaireUniversité Libre de BruxellesBruxellesBelgium
  2. 2.Pool de PhysiqueUniversité Libre de BruxellesBruxellesBelgium
  3. 3.Chimie générale IUniversité Libre de BruxellesBruxellesBelgium
  4. 4.Hormonologie fondamentale et appliquéeInstitut de BotaniqueLiègeBelgium

Personalised recommendations