Skip to main content

Circadian Rhythms, Membranes and Susceptibility to Environmental Factors

  • Chapter
Membranes and Circadian Rythms

Summary

Circadian rhythm in energy metabolism and circadian rhythmicity of plasmamembrane-linked functions are possibly closely coupled. Rhythmic stimulation of plasmamembrane-bound receptors could feed-back on cellular energy metabolism (phase shifting) which in turn could rephase sensitivity changes of plasmamembrane-bound receptors and metabolic function (e.g. transporters and channels).

Indications for membrane-associated rhythmic functions are deduced from rhythmic photochrome pelletability in Cucurbita, the rhythmic binding of alkaline peroxidase to plasmamembrane microsomes from Pharbitis and the amplitude modulation of this rhythm by photochrome photoreversibility, only at a particular phase of the rhythm.

These results clearly indicate an endogenous rhythmic control of the phase for potential amplitude modulation by the photoreceptor phytochrome in Pharbitis, a phenomenon earlier observed in Chenopodium for enzymes involved in energy metabolism.

The short-day plant Chenopodium rubrum is characterized by rhythmic functions in the different organs (leaves, shoot, root, apical meristem). Organization of activity in the whole plant seems to depend on the communication between the different organs and tissues via frequency-coded (electrical) signals.

A 20 h rhythm in cell division at the apex might impose rhythmic limits on the effectiveness of a floral stimulus originating in a 30 h rhythmic pattern from the leaves. A two frequency oscillation in the pattern of a circadian, rhythm in stem-extension-rate (SER) is considered to result from the interaction between rhythmic functions which originate in the leaf and in the stem or apex.

Changing the phase or frequency of the leaf-based oscillation by the critical photoperiod via photochrome could result in a modified interaction between leaf- and shoot -based rhythmic (electrical) activity and might thus lead to a change in the rates and planes of cell division at the apex to allow flower initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamec L, Machackova I, Krekule J, Novakova M (1989) Electric current inhibits flowering in the short-day plant Chenopodium rubrum L. J Plant Physiol 134: 43–46

    Google Scholar 

  • Aimi R, Shibasaki S (1975) Diurnal change in bioelectric potential of Phaseolus plant in relation to the leaf movement and light conditions. Plant Cell Physiol 16:1157–1162

    Google Scholar 

  • Bertram L, Karisen P (1994) Patterns in stem elongation rate in chrysanthemum and tomato plants in relation to irradiance and day/night temperature. Sci Hort 58: 139–150

    Article  Google Scholar 

  • Bowler C, Neuhaus G, Yamagata H, Chua N-H (1994) Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 77: 73–81

    Article  PubMed  CAS  Google Scholar 

  • Bünning E (ed) (1977) Die physiologische Uhr Springer-Verlag, Berlin

    Google Scholar 

  • Crèvecoeur M, Crespi P, Lefort F, Greppin H (1992) Sterols and plasmalemma modification in spinach apex during transition to flowering. J Plant Physiol 139: 595–599

    Google Scholar 

  • Davies E (1987a) Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant Cell Environ 10: 623–631

    Article  Google Scholar 

  • Davies E (1987b) Plant responses to wounding In: Davies D.D (ed) The biochemistry of plants Vol 12, Academic Press, New York, pp 243–364

    Google Scholar 

  • Davies E, Zawadzki T, Witters D (1991) Electrical acitvity and signal transmission in plants: how do plants know? In: Penel C, Greppin H (eds) Plant signalling, plasma membrane and change of state Imprimerie Nationale, Geneva, pp 119–137

    Google Scholar 

  • De Looze SM, Wagner E (1983a) In vitro and in vivo regulation of chloroplast glyceraldehyde-3-phosphate dehydrogenase isozymes from Chenopodium rubrum L I Purification and properties of isozymes. Physiol Plant 57: 231–237

    Article  Google Scholar 

  • De Looze SM, Wagner E (1983b) In vitro and in vivo regulation of chloroplast glyceraldehyde-3-phosphate dehydrogenase isozymes from Chenopodium rubrum L II In vitro modulation of the isozyme pattern. Physiol Plant 57: 238–242

    Article  Google Scholar 

  • De Looze SM, Wagner E (1983c) In vitro and in vivo regulation of chloroplast glyceraldehyde-3-phosphate dehydrogenase isozymes from Chenopodium rubrum L III The molecular basis of the aggregation phenomenon: chloroplast glyceraldehyde-3- phosphate dehydrogenase as an ambiquitous enzyme. Physiol Plant 57: 243–249

    Article  Google Scholar 

  • Due G (1989) Frequency as a property of physiological signals in plants. Plant Cell Environ 12: 145–149

    Article  Google Scholar 

  • Ferner J (1983) A mechanism for the regulation of ligament width based on the resonance frequency of ion concentration waves. J Theor Biol 102: 477–486

    Article  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92: 696–717

    Article  CAS  Google Scholar 

  • Frosch S, Wagner E (1973a) Endogenous rhythmicity and energy transduction II Photochrome action and the conditioning of rhythmicity of adenylate kinase, NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase in Chenopodium rubrum by temperature and light intensity cycles during germination. Can J Bot 51: 1521–1535

    Article  CAS  Google Scholar 

  • Frosch S, Wagner E (1973b) Endogenous rhythmicity and energy transduction III Time course of phytochrome action in adenylate kinase, NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase in Chenopodium rubrum. Can J Bot 51: 1529–1535

    Article  CAS  Google Scholar 

  • Fukshansky L (1981) A quantitative study of timing in plant photoperiodism. J Theor Biol 93: 63–91

    Article  CAS  Google Scholar 

  • Giese G, Wunderlich F (1982) In vitro ribosomal ribonucleoprotein transport Temperature-induced “graded unlocking” of nuclei. J Biol Chem 258: 131–135

    Google Scholar 

  • Goldbeter A, Koshland Jr DE (1982) Sensitivity amplification in biochemical systems. Quant Rev Biophys 15: 555–591

    Article  CAS  Google Scholar 

  • Horwitz BA, Epel, BL (1978) Circadian changes in activity of the far-red form of phytochrome: Physiological and in vivo spectrophotometry studies. Plant Sci Lett 13: 9–14

    Article  CAS  Google Scholar 

  • Jabben M, Schäfer E (1976) Rhythmic oscillations of phytochrome and its pelletability in Cucurbita pepo L. Nature 259: 114–1

    Article  CAS  Google Scholar 

  • Kiefer S, Penel C, Greppin H (1985) Ca2+ and M2+ mediated binding of the glycoprotein peroxidase to membranes of Pharbitis nil cotyledons. Plant Sci Lett 39: 37–43

    Article  CAS  Google Scholar 

  • Kiefer S, Penel C, Greppin H, Wagner E (1987) Association de peroxydases aux membranes de courgettes, de raifort et de Pharbitis nil. Arch Sc Genève 40: 369–378

    CAS  Google Scholar 

  • King RW (1975) Multiple circadian rhythms regulate photoperiodic flowering responses in Chenopodium rubrum. Can J Bot 53: 2631–2638

    Article  Google Scholar 

  • Lucas WJ, Ding B, Van der Schoot, Ch (1993) Tansley Review No 58 Plasmodesmata and the supracellular nature of plants. New Phytol 125:435–476

    Article  Google Scholar 

  • Machackova I, Krekule J (1991) The interaction of direct electric current with endogenous rhythms of flowering in Chenopodium rubrum. J Plant Physiol 138: 365–369

    Google Scholar 

  • Machackova I, Prospiskova M, Krekule J (1990) Further studies on the inhibitory action of direct electric current on flowering in the short-day plant Chenopodium rubrum L. J Plant Physiol 136: 381–384

    Google Scholar 

  • Marmé D (1977) Phytochrome: Membranes as possible sites of primary action. Ann Rev Plant Physiol 28: 173–198

    Article  Google Scholar 

  • Martinec J, Crèvecoeur M, Crespi P, Greppin H (1993) Plasma membrane thickness and flowering induction in Chenopodium rubrum and in Spinacia oleracea. Archs Sci Genève 46: 233 248

    Google Scholar 

  • Mayer W-E, Fischer C (1994) Protoplasts from Phaseolus occineus L pulvinar motor cells show circadian volume oscillations. Chronobiol Int 11: 156–164

    Article  PubMed  CAS  Google Scholar 

  • Millet B, Botton A-M, Hayoum C, Koukkari WL (1988) An experimental analysis and comparison of three rhythms of movements in bean (Phaseolus vulgariss L). Chronobiol Int 5: 187–193

    Article  PubMed  CAS  Google Scholar 

  • Mills JW, Lazaro J, Mandel J (1994) Cytoskeletal regulation of membrane transport events. FASEB J 8: 1161–1165

    PubMed  CAS  Google Scholar 

  • Montavon M, Greppin H (1983) Effet sur le dévelopement de l’épinard de l’application d’un potentiel électrique sur le petiole d’une feuille. Saussurea (Genève) 14: 79–85

    Google Scholar 

  • Montavon M, Greppin H (1986) Développement apical de l’épinard et application d’un potentiel électrique de contrainte. Saussurea (Genève) 17: 85–91

    Google Scholar 

  • Neuhaus G, Bowler C, Kern R, Chua N-H (1993) Calcium/calmodulin-dependent and -independent photochrome signal transduduction pathway. Cell 73: 937–952

    Article  PubMed  CAS  Google Scholar 

  • Novak B, Sironval C (1976) Circadian rhythms of the transcellular current in regenerating enucleated posterior stalk segments of Acetabularia mediterranea. Plant Sci Lett 6: 273–283

    Article  Google Scholar 

  • Pahl HL, Baeuerle PA (1994) Oxygen and the control of gene expression. Bio Essays 16: 497–502

    CAS  Google Scholar 

  • Paietta J (1982) Photooxydation and the evolution of circadian rhythmicity. J Theor Biol 97: 77–82

    Article  PubMed  CAS  Google Scholar 

  • Pickard BG (1994) Contemplating the plasmalemmal control center model. Protoplasma 182: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Quail PH (1975a) Particle-bound phytochrome: association with a ribonucleoprotein fraction from Cucurbita pepo L. Planta 123: 223–234

    Article  CAS  Google Scholar 

  • Quail PH (1975b) Particle-bound phytochrome: The nature of the interaction between pigment and particulate fractions. Planta 123: 235–246

    Article  CAS  Google Scholar 

  • Ruiz-Fernandez S, Wagner E (1994) A new method of measurement and analysis of the stem extension growth rate to demonstrate complete synchronization of Chenopodium rubrum plants by environmental conditions. J Plant Physiol 144: 362–369

    Google Scholar 

  • Ruiz-Fernandez S, Wagner E (1989) Flowering in Chenopodium rubrum Light control of stem elongation rate (SER) as a systemic marker for flower induction. Flowering Newsletters 8: 14–19

    Google Scholar 

  • Sandelius AS, Penel C, Auderset G, Grightman A, Millard M, Morré DJ (1986) Isolation of highly purified fractions of plasma membrane and tonoplast from the same homogenate of plant cells by free flow electrophoresis. Plant Physiol 81: 177–185

    Article  PubMed  CAS  Google Scholar 

  • Satoh N (1982) Timing mechanisms in early embryonic development. Differentiation 22: 156

    Article  PubMed  CAS  Google Scholar 

  • Srere PA, Mosbach K (1974) Metabolic compartmentation: symbiotic, organellar, multienzymic and microenvironmental. Ann Rev Microbiol 28: 61–83

    Article  CAS  Google Scholar 

  • Tanada T (1983) Photogeneration of a bioelectric field by red and far-red irradiation in soybean hypocotyls. Plant Cell Environ 6: 69–72

    Google Scholar 

  • Verma DPS, Cheon Ch-III, Hong Z (1994) Small GTP-binding proteins and membrane biogenesis in plants. Plant Physiol 106: 1–6

    PubMed  CAS  Google Scholar 

  • Vince-Prue D, Gressel J (1985) Pharbitis nil. Japanese morning glory In: Halevy AH (ed) CRC Handbook of flowering, Vol IV CRC Press Inc Boca Raton, Florida, pp 47–81

    Google Scholar 

  • Wagner E (1976a) Endogeneous rhythmicity in energy metabolism: Basis for timer- photoreceptor-interactions in photoperiodic control. In: Hastings JW, Schweiger HG (eds) Dahlem Konferenzen, Abakon Verlagsgesellschaft, Berlin, pp 215–238

    Google Scholar 

  • Wagner E (1976b) Kinetics in metabolic control of time measurement in photoperiodism. J Interdiscipl Cycle Res 7: 313–332

    Article  CAS  Google Scholar 

  • Wagner E (1976c) The nature of photoperiodic time measurement: energy transduction and phytochrome action in seedlings of Chenopodium rubrum In: Smith H (ed) Light and plant development. Proceedings of the 22 nd Nottingham Easter School in Agricultural Sciences, Butterworth, London

    Google Scholar 

  • Wagner E (1977) Molecular basis of physiological rhythms. In: Jennings DH (ed) Integration of activity in the higher plant, Society for Experimental Biology, Symposium 31, Cambridge University Press, pp 33–72

    Google Scholar 

  • Wagner E (1983) Circadian rhythms: The basis for information processing in eukaryotes during adaptation to seasonal changes in photo- and thermoperiods. In: Montagnoli G, Erlanger BF (eds) Molecular models of photoresponsiveness. Plenum Press, New York, pp 197–202

    Google Scholar 

  • Wagner E, Bonzon M, Greppin H (1985) Membrane-oscillator hypothesis of metabolic control in photoperiodic time measurement and the temporal organization of development and behaviour in plants. In: Packer L (ed) New developments and methods in membrane research and biological energy transduction, Plenum Pub Co, pp 525–546

    Google Scholar 

  • Wagner E, Cumming BG (1970) Betacyanin accumulation, chlorophyll content and flower initiation in Chenopodium rubrum as related to endogenous rhythmicity and phytochrome action. Can J Bot 48: 1–18

    Article  CAS  Google Scholar 

  • Wagner E, Fukshansky L (1985) Die zeitliche Organization des eukaryotischen Energiestoffwechsels als Grundlage für die Signalverarbeitung im Photo- und Thermoperiodismus. Ber Dtsch Bot Ges 98: 35–52

    Google Scholar 

  • Wagner E, Haertle U, Kossmann I, Frosch S (1983) Metabolie and developmental adaption of eukaryotic cells as related to endogenous and exogenous control of translocators between subcellar compartments. In: Schenk H, Schwemmler W (eds) Endocytobiology n, Walter de Gruyter & Co, Berlin, New York, pp 341–351

    Google Scholar 

  • Wagner E, Ruiz-Fernandez S, Normann J, Bonzon M, Greppin H (1993) Chronobiology–Spatio-temporal organization of living systems - The induction of flowering. In: Greppin H, Bonzon M, Degli Agosti R (eds) Some physico-chemical and mathematical tools for understanding living systems. University of Geneva, pp 109–124

    Google Scholar 

  • Walter P, Blobel G (1981) Translocation of proteins across the endoplasmic reticulum III Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol 91: 557–561

    Article  PubMed  CAS  Google Scholar 

  • Wildon DC, Doherty HM, Eagles G, Bowles DJ, Thain JF (1989) Systemic responses arising from localized heat stimuli in tomato plants. Ann Bot 64: 691–695

    Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360: 62–65

    Article  CAS  Google Scholar 

  • Yamaguti Y (1932) Über elektrische Potentialveränderungen an periodisch sich bewegenden Primärblättern von Canavalia ensiformis, D C. Bot Mag (Tokyo) 46: 216–222

    Google Scholar 

  • Yang S, Xiang G, Zhang S, Lou C (1992) Electrical resistance as a measure of graft union. J Plant Physiol 141: 98–104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wagner, E. et al. (1996). Circadian Rhythms, Membranes and Susceptibility to Environmental Factors. In: Vanden Driessche, T., Guisset, JL., Petiau-de Vries, G.M. (eds) Membranes and Circadian Rythms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79903-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79903-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60101-2

  • Online ISBN: 978-3-642-79903-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics