Skip to main content

Ecotoxicity of Certain Heavy Metals Affecting Bacteria-Mediated Biogeochemical Pathways in Sediments

  • Chapter

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

Biogeochemical pathways of carbon turnover in sediments are mainly mediated by bacteria. From the early stages of their evolution on, these procaryotes have had to cope with elevated concentrations of non-essential and toxic heavy metals. As a result, effective mechanisms of resistance to heavy metal ions have evolved (Beveridge 1989). Ecotoxicity of heavy metals via the main biogeochemical pathways of assimilation and dissimilation of carbon in aquatic sediments, however, cannot simply be extrapolated from metal tolerance observed in physiological experiments using cultures. To obtain a realistic basis for ecological prognoses and ecotoxicological risk assessment, there is a need for integrated methods in microbiological analysis of sediment communities. These will have to be developed further and combined with ecophysiological experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiking H, Kok H, Heerikhuizen H van, vant Riet J (1982) Adaptation to cadmium by Klebsiella aerogenes growing in continuous culture proceeds mainly via formation of cadmium sulfide. Appl Environ Microbiol 44:938–944

    Google Scholar 

  • Aiking H, Stijnman C, Garderen C van, Keerikhuizen van, vant Riet J (1984) Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes NCTC 418 growing in continuous culture. Appl Environ Microbiol 47:374–377

    Google Scholar 

  • Albright LJ, Wentworth JW, Wilson EM (1972) Technique for measuring metallic salt effects upon the indigenous heterotrophic microflora of a natural water. Wat Res 6:1589–1596

    Article  Google Scholar 

  • Allen HE, Fu G, Deng B (1993) Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environ Toxicol Chem 12:1441–1453

    Article  Google Scholar 

  • Anderson K, Koopman B, Bitton G (1988) Evaluation of INT-dehydrogenase assay for heavy metal inhibition of activated sludge. Wat Res 22:349

    Article  Google Scholar 

  • Ankley GT, Mattson VR, Leonard EN, West CW, Bennett JL (1991) Predicting the acute toxicity of copper in freshwater sediments: evaluation of the role of acid-volatile sulfide. Environ Toxicol Chem 12:315–320

    Article  Google Scholar 

  • Ankley GT, Mattson VR, Leonard EN, West CW, Bennett JL (1993) Predicting the acute toxicity of copper in freshwater sediments: evaluation of the role of acid-volatile sulfide. Environ Toxicol Chem 12:315–320

    Article  Google Scholar 

  • Applebury ML, Johnson BP, Coleman JE (1970) Phosphate binding to alkaline phosphatase. Metal ion dependence. J Biol Chem 245:4968–4976

    Google Scholar 

  • Avery SV, Tobin JM (1993) Mechanism of adsorption of hard and soft metal ions to Saccharomyces cerevisiae and influence of hard and soft anions. Appl Environ Microbiol 59:2851–2856

    Google Scholar 

  • Babich H, Stotzky G (1980) Environmental factors that influence the toxicity of heavy et al and gaseous pollutants to microorganisms. CRC Critical Reviews in Microbiology 8:99–145

    Article  Google Scholar 

  • Bagarinao T (1992) Sulfide as an environmental factor and toxicant: Tolerance and adaptations in aquatic organisms. Aquatic Toxicol 24:21–62

    Article  Google Scholar 

  • Baldi F, Filipelli M, Olson GJ (1989) Biotransformation of mercury by bacteria isolated from a river collecting cinnabar mine waters. Microb Ecol 17:263–274

    Article  Google Scholar 

  • Baldi F, Pepi M, Filipelli M (1993) Methylmercury resistance in Desulfovibrio desulfuricans strains in relation to methylmercury degradation. Appl Environ Microbiol 59:2479–2485

    Google Scholar 

  • Barkay T, Fouts DL, Olson BH (1985) Preparation of a DNA gene probe for detection of mercury resistance genes in gram-negative bacterial communities. Appl Environ Microbiol 49:686–692

    Google Scholar 

  • Barkay T, Olson BH (1986) Phenotypic and genotypic adaptation of aerobic heterotrophic sediment bacterial communities to mercury stress. Appl Environ Microbiol 52:403–406

    Google Scholar 

  • Barkay T (1987) Adaptation of aquatic microbial communities to Hg2+ stress. Appl Environ Microbiol 53:2725–2732

    Google Scholar 

  • Barkay T, Turner RR, Brook A vanden, Liebert C (1991) The relationships of Hg(II) volatilization from a freshwater pond to the abundance of mer genes in the gene pool of the indigenous microbial community. Microb Ecol 21:151–161

    Article  Google Scholar 

  • Barnhart LH, Vestal JR (1983) Effects of environmental toxicants on metabolic activity of natural microbial communities. Appl Environ Microbiol 46:970–977

    Google Scholar 

  • Berman M, Chase T, Bartha R (1990) Carbon flow in biomethylation by Desulfovibrio desulfuricans. Appl Environ Microbiol 56:298–300

    Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bact 141:876–887

    Google Scholar 

  • Beveridge TJ (1984) Mechanisms of the binding of metallic ions to bacterial walls and the possible impact on microbial ecology. In: Klug MJ and Reddy CA (eds), Current Perspectives in Microbial Ecology. ASM, Washington, DC, pp 601–607

    Google Scholar 

  • Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization. Annu Rev Microbiol 43:147–171

    Article  Google Scholar 

  • Bitton G, Friehofer V (1978) Influence of extracellular polysaccharides on the toxicity of copper and cadmium on Klebsiella aero genes. Microb Ecol 4:119–123

    Article  Google Scholar 

  • Blom A, Harder W, Matin A (1992) Unique and overlapping pollutant stress proteins of Escherichia coli. Appl Environ Microbiol 58:331–334

    Google Scholar 

  • Blondin GA, Knobeloch JM, Read HW, Harkin HW (1989) An in vitro submitochondrial bioassay for predicting acute toxictity in fish. In: Suter GW II, Lewis MA (eds) Aquatic Toxicology and Environmental Fate, vol 11, ASTM; STP 1007. American Society for Testing and Materials, Philadelphia, pp 551–563

    Google Scholar 

  • Bogelen RA van, Kelly PM, Neidhardt FC (1987) Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J Bacteriol 169:26–32

    Google Scholar 

  • Brain P, Cousens R (1989) An equation to describe dose responses where there is stimulation of growth at low doses. Water Research 29:93–96

    Google Scholar 

  • Burton jr GA, Stemmer BL (1988) Evaluation of surrogate tests in toxicant impact assessment. Toxicity Assessment 3:255–269

    Article  Google Scholar 

  • Bucksteeg W (1959) Die Beurteilung von Schlamm und Abwasser mittels TTC Gas Wasser Fach 36:916–920

    Google Scholar 

  • Capone DG, Reese DR, Kiene RP (1983) Effects of metals on methanogenesis, sulfate reduction, carbon dioxide evolution and microbial biomass in anoxic salt marsh sediments. Appl Environ Microbiol 45:1586–1591

    Google Scholar 

  • Choi S Ch, Bartha R (1993) Cobalamin-mediated mercury methylation by Desulfovibrio desulfuricans LS Appl Environ Microbiol 59:290–295

    Google Scholar 

  • Clark DL, Weiss AA, Silver S (1977) Mercury and organomercurial resistances determined by plasmids in Pseudomonas. J Bacteriol 132:186–196

    Google Scholar 

  • Collins YE, Stotzky G (1989) Factors affecting the toxicity of heavy metals to microbes. In: T J Beveridge and RJ Doyle (eds), Metal ions and bacteria. John Wiley Sons, New York, p 31–90

    Google Scholar 

  • Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    Google Scholar 

  • Compeau GC, Bartha R (1987) Effect of salinity on mercury-methylating activity of sulfate-reducing bacteria in estuarine sediments. Appl Environ Microbiol 53:261–265

    Google Scholar 

  • Cooksey DA, Azad HR (1992) Accumulation of copper and other metals by copper-resistant plant-pathogenic and saprophytic pseudomonads. Appl Environ Microbiol 58:274–278

    Google Scholar 

  • Craig PJ (1980) Metal cycles and biological methylation. In: Hutzinger O (ed), Handbook of Environmental Chemistry 1A: 169–227

    Google Scholar 

  • Cunningham DP, Lundie jr LL (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14

    Google Scholar 

  • Dean-Ross D, Mills AL (1989) Bacterial community structure and function along a heavy metal gradient. Appl Environ Microbiol 55:2002–2009

    Google Scholar 

  • Doelman P, Haanstra L (1984) Short-term and long-term effects of cadmium, chromium, copper, nickel, lead, and zinc on soil microbial respiration in relation to abiotic soil factors. Plant and Soil 79:305–316

    Article  Google Scholar 

  • Doelman P, Haanstra L (1986) Short- and long-term effects of heavy metals on urease activity in soils. Biol Fertil Soils 2:213–218

    Article  Google Scholar 

  • Doyle JJ, Marshall TT, Pfander WH (1975) Effects of cadmium on the growth and uptake of cadmium by microorganisms. Appl Environ Microbiol 29:562–564

    Google Scholar 

  • Dutka BJ, Bitton G (1986) Toxicity testing using microorganisms. Vol.2, CRC Press, Boca Raton, FL

    Google Scholar 

  • Dutka BJ, Kwan KK (1988) Battery of screening tests approach applied to sediment extracts. Toxicity Assessment 3:303–314

    Article  Google Scholar 

  • Dutka BJ, Kwan KK, Rao SS, Jurkovic A, Mcinniss R (1991) Use of bioassays to evaluate river water and sediment quality. Environ Toxicol Wat Qual 6:309–327

    Article  Google Scholar 

  • Dutton RJ, Bitton G, Koopman B (1988) Enzyme biosynthesis versus enzyme activity as basis for microbial toxicity testing. Toxicity Assessment 3:245–253

    Article  Google Scholar 

  • Duxbury T, Bicknell B (1983) Metal-tolerant bacterial populations from natural and metal-polluted soils. Soil Biol Biochem 15:243–250

    Article  Google Scholar 

  • Duxbury T (1986) Ecological aspects of heavy metal responses in microorganisms. Adv Microb Ecol 8:185–235

    Google Scholar 

  • Dyrssen D, Kremling K (1990) Increasing hydrogen sulfide concentration and trace metal behavior in the anoxic Baltic waters. Mar Chem 30:193–204

    Article  Google Scholar 

  • Eichhorn GL (1975) Active sites of biological macromolecules and their interactions with heavy metals. In: Mcintire AD and Mills CF (eds), Effects of heavy metal and organohalogen compounds. Plenum Publ, New York, pp 123–142

    Google Scholar 

  • Elskens M, Leermakers M, Panutrakul S, Montany F, Baeyens W (1991) Microbial activity in sandy and muddy estuarine sediments. Geo-Marine Letters 11:194–198

    Article  Google Scholar 

  • Ewijk PH van, Hoekstra JA (1993) Calculation of the EC50 and its confidence interval when subtoxic stimulus is present. Ecotoxicol Environ Safety 25:25–32

    Article  Google Scholar 

  • Farrell RE, Germida JJ, Huang PM (1993) Effects of chemical speciation in growth media von the toxicity of mercury (II). Appl Environ Microbiol 59:1507–1514

    Google Scholar 

  • Fernandez-Leborans G, Novillo-Villajos A (1993) Changes in trophic structure of a protozoan community subjected to cadmium. Ecotoxicol and Environ Safety 25:271–279

    Article  Google Scholar 

  • Ferris FG, Schultze S, Witten TC, Fyfe WS, Beveridge TJ (1989) Metal interactions with microbial biofilms in acidic and neutral pH environments. Appl Environ Microbiol 55:1249–1257

    Google Scholar 

  • Flatau GN, Clement RL, Gauthier MJ (1986) Influence of the cell envelope on the accumulation of cadmium by a marine pseudomonad. Microbios Lett 32:141–146

    Google Scholar 

  • Flatau GN, Clement RL, Mahdyoun F, Gauthier MJ (1991) Resistance to cadmium in a marine bacterium. Kieler Meeresforsch Sonderh 8:343–347

    Google Scholar 

  • Flemming CA, Ferris FG, Beveridge TJ, Bailey GW (1990) Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites. Appl Environ Microbiol 56:3191–3203

    Google Scholar 

  • Fu G, Allen H, Cao Y (1992) The importance of humic acids to proton and cadmium binding in sediments. Environ Toxicol Chem 11:1363–1372

    Article  Google Scholar 

  • Geesey GG, Jang L, Jolley JG, Hankins MR, Iwaoka T, Griffith PR (1988) Binding of metal ions by extracellular polymers of biofilm bacteria. Wat Sci Tech 20:161–165

    Google Scholar 

  • Gonye ER, Jones GE (1973) An ecological survey of open ocean and estuarine microbial populations II. The oligodynamic effect of nickel on marine bacteria. Marine Microbial Ecology, Columbia,SC, Univ. of South Carolina Press

    Google Scholar 

  • Gordon AS, Harwood VJ, Sayyar S (1993) Growth, copper-tolerant cells, and extracellular protein production in copper-stressed chemostat cultures of Vibrio alginolyticus. Appl Environ Microbiol 59:60–66

    Google Scholar 

  • Graf G (1986) Winter inversion of biomass and activity profile in a marine sediment. Mar Ecol Prog Ser 33:231–235

    Article  Google Scholar 

  • Griffiths RP, Caldwell BA, Morita RY (1984) Observations on microbial percent respiration values in Arctic and Subarctic marine waters and sediments. Microb Ecol 151–164

    Google Scholar 

  • Griffiths RP, Moyer CL, Caldwell BA, Ye C, Morita RY (1990) Long-term starvation-induced loss of antibiotic resistance in bacteria. Microb Ecol 19:251–257

    Article  Google Scholar 

  • Guzzo A, Diorio C, DuBow MS (1991) Transcription of the Escherichia coli flic gene is regulated by metal ions. Appl Environ Microbiol 57:2255–2259

    Google Scholar 

  • Hahne HCH, Kroontje W (1973) Significance of pH and chloride concentration on behavior of heavy metal pollutants: mercury (II), cadmium (II), zinc (II), and lead (II). J Environ Qual 2:444–450

    Article  Google Scholar 

  • Hambuckers-Berhin F, Remacle J (1990) Cadmium sequestration in cells of two strains of Alcaligenes eutrophus. FEMS Microb Ecol 73:309–316

    Article  Google Scholar 

  • Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951

    Article  Google Scholar 

  • Harwood-Sears V, Gordon AS (1990) Copper-induced production of copper-binding supernatant proteins by the marine bacterium Vibrio alginolyticus. Appl Environ Microbiol 56:1327–1332

    Google Scholar 

  • Heise S (1995) Der Einfluß von Umweltfaktoren auf die Bildung von exopolymerer Substanz (EP) durch ein marines Bakterium. PhD thesis, University of Kiel

    Google Scholar 

  • Henneke H (1990) Regulation of bacterial gene expression by metal-protein complexes. Mol Microbiol 4:1621–1628

    Article  Google Scholar 

  • Higham DP, Sadler PJ (1984) Cadmium resistant Pseudomonas putida synthesizes novel cadmium protein. Science 225:1043–1045

    Article  Google Scholar 

  • Higham DP, Sadler PJ, Scawen MD (1984) Cadmium-resistant Pseudomonas putida synthesizes novel cadmium protein. Science 225:1043–1046

    Article  Google Scholar 

  • Higham DP, Sadler PJ, Scawen MW (1985) Effect of the cadmium on the morphology, membrane integrity and permeability of Pseudomonas putida. J Gen Microbiol 131:2539–2544

    Google Scholar 

  • Hines ME, Jones GE (1982) Microbial metal tolerance in Bermuda carbonate sediments. Appl Environ Microbiol 44:502–505

    Google Scholar 

  • Hornor SG, Hilt BA (1985) Distribution of zinc-tolerant bacteria in stream sediments. Hydrobiologia 128:155–160

    Article  Google Scholar 

  • Houba C, Remacle J (1980) Composition of the saprophytic bacterial communities in freshwater systems contaminated by heavy metals. Microb Ecol 6:55–69

    Article  Google Scholar 

  • Howard DE, Evans RD (1993) Acid-volatile sulfide (AVS) in a seasonally anoxic mesotrophic lake: seasonal and spatial changes in sediment AVS. Environ Toxicol Chem 12:1051–1057

    Article  Google Scholar 

  • Hsieh KM, Lion LW, Shuler ML (1985) Bioreactor for the study of defined interactions of toxic metals and biofilms. Appl Environ Microbiol 50:1155–1161

    Google Scholar 

  • Hughes MN, Poole RK (1991) Metal speciation and microbial growth — the hard (and soft) facts. J Gen Microbiol 137:125–734

    Google Scholar 

  • Jonas RB, Gilmour CC, Stoner DL, Weir MM, Tuttle JH (1984) Comparison of methods to measure acute metal and organometal toxicity to natural aquatic microbial communities. Appl Environ Microbiol 47:1005–1011

    Google Scholar 

  • Jonas RB (1989) Acute copper and cupric ion toxicity in an estuarine microbial community. Appl Environ Microbiol 55:43–49

    Google Scholar 

  • Juniper SK, Thompson JAJ, Calvert SE (1986) Accumulation of minerals and trace elements in biogenic mucus at hydrothermal vents. Deep-Sea Res 33:339–347

    Article  Google Scholar 

  • Karl DM (1986) Determination of in situ microbial biomas, viability, metabolism and growth. In: Poindexter JS, Leadbetter ER (eds) Bacteria in Nature, Vol.2, Plenum, New York, pp 85–176

    Google Scholar 

  • Katayama-Hirayama K (1986) Inhibition of the activities of β-galactosidase and dehydrogenases of activated sludge by heavy metals. Wat Res 20:491

    Article  Google Scholar 

  • Kellems BL, Lion LW (1989) Effect of bacterial exopolymer on lead(II) adsorption by GAL203 in seawater. Estu Coast Shelf Sci 28:443–457

    Article  Google Scholar 

  • Kepkay PE, Schwinghamer P, Willar T, Bowen AJ (1986) Metabolism and metal binding by surface-colonizing bacteria: results of microgradient measurements. Appl Environ Microbiol 51:163–170

    Google Scholar 

  • Khazaeli MB, Mitra RS (1981) Cadmium-binding component in Escherichia coli during accomodation to low levels of this ion. Appl Environ Microbiol 41:46–50

    Google Scholar 

  • Komura I, Izaki K (1971) Mechanisms of mercuric chloride resistance in microorganisms. I. Vaporization of a mercury compound from mercuric chloride by multiple drug resistance strains of Escherichia coli. J Biochem 70:885–893

    Google Scholar 

  • Koopman B, Bitton G (1987) INT-dehydrogenase assay for chemical toxicity in waste water systems. Toxicity Assessment 2:105

    Article  Google Scholar 

  • Kurek E, Czaban J, Bollag J (1982) Sorption of cadmium by microorganisms in competition with other soil constituents. Appl Environ Microbiol 43:1011–1015

    Google Scholar 

  • Lanza GR, Dougherty JM (1991) Microbial enzyme activity and biomass relationships in soil ecotoxicology. Environ Toxicol Wat Qual 6:165–176

    Article  Google Scholar 

  • Lenhard G, Nourse LD (1964) The measurement of dehydrogenase activity of activated sludges. 2nd Int Conf Wat Pollut Res Section II, No.6

    Google Scholar 

  • Liebert C, Barkay T (1988) A direct viable counting method for measuring tolerance of aquatic microbial communities to Hg2+. Can J Microbiol 34:1090–1095

    Article  Google Scholar 

  • Liebert C, Barkay T, Turner RR (1991) Acclimation of aquatic microbial communities to Ag(II) and CH3HgCl in polluted freshwater ponds. Microb Ecol 21:139–149

    Article  Google Scholar 

  • Litchfield CD, Rake JB, Zindulis J, Watanabe TT, Stein DJ (1975) Optimization of procedures for recovery of heterotrophic bacteria from marine sediments. Microb Ecol 1:219–233

    Article  Google Scholar 

  • Liu D (1985) Effect of bacterial cultures on microbial toxicity assessment. Bull Environ Contam Toxicol 34:331–339

    Article  Google Scholar 

  • Luoma SN, Carter JL (1993) Understanding the toxicity of contaminants in sediments: Beyond the bioassay-based paradigm. Environ Toxicol Chem 12:793–796

    Article  Google Scholar 

  • Martinez J, Vives-Rego J (1988) Thymidine incorporation and bacterial mortality as eco-toxicological assessment in aquatic habitats. Toxicity Assessment 3:33–40

    Article  Google Scholar 

  • McLean RJC, Beauchemin D, Beveridge TJ (1992) Influence of oxidation state on iron binding by Bacillus licheniformis capsule. Appl Environ Microbiol 58:405–408

    Google Scholar 

  • Melanovich FP, Wilson DW (1975) Detoxifying effect of yellow substance on Escherichia coli in media containing copper. Nature 253:460–461

    Article  Google Scholar 

  • Mills AL, Colwell RR (1977) Microbiological effects of metal ions in Chesapeake Bay water and sediment. Bull Environ Contam Toxicol 18:99–103

    Article  Google Scholar 

  • Mittelman MW, Geesey GG (1985) Copper-binding characteristics of exopolymers from a fresh water sediment bacterium. Appl Environ Microbiol 49:846–851

    Google Scholar 

  • Moriarty DJW (1986) Measurement of bacterial growth rates in aquatic systems from rates of nucleic acid synthesis. Adv Microb Ecol 9:245–292

    Google Scholar 

  • Moriarty DJW, Pollard PC (1990) Effects of radioactive labelling of macromolecules, disturbance of bacteria and adsorption of thymidine to sediment on the determination of bacterial growth rates in sediment with tritiated thymidine. J Microbiol Meth 11:127–139

    Article  Google Scholar 

  • Mountfort DO, Asher RA (1981) Role of sulfate reduction versus methanogenesis in terminal carbon flow in polluted intertidal sediments of Waimea Inlet, Nelson, New Zealand. Appl Environ Microbiol 42:252–253

    Google Scholar 

  • Mullen MD, Wolf DC, Ferris FG, Beveridge TJ, Fleming CA, Bailey GW (1989) Bacterial sorption of heavy metals. Appl Environ Microbiol 55:3143–3149

    Google Scholar 

  • Nakamura K, Sakamoto M, Uchiyama H, Yagi O (1990) Organomercurial-volatilizing bacteria in the mercury-polluted sediment of Minamata Bay, Japan. Appl Environ Microbiol 56:304–305

    Google Scholar 

  • Nelson JD, Colwell RR (1975) The ecology of mercury-resistant bacteria in Chesapeake Bay. Microb Ecol 2:191–218

    Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environ Pollut Ser. B1:3–26

    Article  Google Scholar 

  • Novitsky JA (1987) Microbial growth rates and biomass production in a marine sediment: Evidence for a very active but mostly nongrowing community. Appl Environ Microbiol 2363–2372

    Google Scholar 

  • Nyström T, Albertson NH, Flärdh K, Kjelleberg S (1990) Physiological and molecular adaptation to starvation and recovery from starvation by the marine Vibrio sp. S14. FEMS Microbiol Ecol 74:129–140

    Article  Google Scholar 

  • Obst U, Holzapfel-Pschorn A, Wiegand-Rosinus M (1988) Application of enzyme assays for toxicological water testing. Toxicity Assessment 3:81–91

    Article  Google Scholar 

  • Olafson RW, Abel K, Sim RG (1979) Prokaryotic metallothionein: Preliminary characterization of a blue-green alga heavy metal-binding protein. Biochem Biophys Res Commun 89:36–43

    Article  Google Scholar 

  • Olson BH, Barkay T, Colwell RR (1979) Role of plasmids in mercury transformation by bacteria isolated from the aquatic environment. Appl Environ Microbiol 38:478–485

    Google Scholar 

  • Olson GJ, Iverson WP, Brinckman FE (1981) Volatilization of mercury by Thiobacillus ferrooxidans. Curr Microbiol 5:115–118

    Article  Google Scholar 

  • Olson GI, Porter FD, Rubinstein J, Silver S (1982) Mercuric reductase enzyme from a mercury-volatilizing strain of Thiobacillus ferrooxidans. J Bacteriol 151:1230–1236

    Google Scholar 

  • Olson BH, Thornton I (1982) The resistance pattern to metals of bacterial populations in contaminated land. J Soil Sci 33:271–277

    Article  Google Scholar 

  • Oren A (1987) On the use of tetrazolium salts for the measurement of microbial activity in sediments. FEMS Microbiol Ecol 45:127–133

    Article  Google Scholar 

  • Pederson D, Sayler G (1981) Methanogenesis in freshwater sediment: inherent variability and effects of environmental contaminants. Can J Microbiol 27:198–205

    Article  Google Scholar 

  • Perez-Garcia A, Codina JC, Cazorla FM, deVicente A (1993) Rapid respirometric toxicity test: Sensitivity to metals. Bull Environ Contam Toxicol 50:703–708

    Article  Google Scholar 

  • Perry RD, Silver S (1982) Cadmium and manganese transport in Staphylococcus aureus membrane vesicles. J Bacteriol 150:973–976

    Google Scholar 

  • Piker L, Reichardt W (1991) Do sulfate-reducing bacteria respond to thymidine incorporation assays in marine sediments? Kieler Meeresforsch Sonderh 8:102–106

    Google Scholar 

  • Poindexter JS, Leadbetter ER (1986) Bacteria in nature. Vol. 2, Plenum, New York

    Google Scholar 

  • Radosevich M, Klein DA (1993) Bacterial enumeration and mercury volatilization in deep subsurface sediment samples. Bull Environ Contam Toxicol 51:226–233

    Article  Google Scholar 

  • Ramamoorty S, Kushner DJ (1975) Binding of mercuric and other heavy metal ions by microbial growth media. Microb Ecol 2:162–176

    Article  Google Scholar 

  • Ramlal PS, Rudd JWM, Furutami A, Xun L (1985) The effect of pH on methylmercury production and decomposition in lake sediments. Can J Fish Aquat Sci 42:685–692

    Article  Google Scholar 

  • Reichardt W (1978) Einführung in die Methoden der Gewässer-Mikrobiologie. G Fischer-Verlag Stuttgart, New York, 250 pp

    Google Scholar 

  • Reichardt W (1979) Significance of different methods to determine dehydrogenase (ETS)-activities in aquatic environments. Arch Hydrobiol Beih 12:105–114

    Google Scholar 

  • Reichardt W (1988a) Impact of bioturbation by Arenicola marina on microbiological parameters in intertidal sediments. Mar Ecol Prog Ser 44:149–158

    Article  Google Scholar 

  • Reichardt W (1988b) Impact of Antarctic benthic fauna on the enrichment of biopolymer degrading psychrophilic bacteria. Microb Ecol 15:211–271

    Article  Google Scholar 

  • Reichardt W, Piker L, Juterzenka K von, Heise S, Grossmann S, Bussmann I (1991) Burrowing macrozoobenthos as major determinant of bacteria in sediments. Kieler Meeresforsch Sonderh 8:86–91

    Google Scholar 

  • Reichardt W, Heise S, Piker L (1993) Ecotoxicity testing of heavy metals using methods of sediment microbiology. Environ Toxicol Wat Qual 8:299–311

    Article  Google Scholar 

  • Reichardt W, Heise S, Piker L, Juterzenka K von (1994) Microbiological aspects of heavy metal exotoxicity in Elbe river sediments. Verh Int Verein Limnol 25:2043–2046

    Google Scholar 

  • Remacle J, Vercheval C (1992) A zinc-binding protein in a metal-resistance strain, Alcaligenes eutrophus CH34. Can J Microbiol 37:875–877

    Article  Google Scholar 

  • Ridley WP, Dizikes Li, Wood JM (1977) Biomethylation of toxic elements in the environment. Science 197:329–332

    Article  Google Scholar 

  • Robinson JB, Tuovinen OH (1984) Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: Physiological, biochemical, and genetic analyses. Microbiol Revs 48:95–124

    Google Scholar 

  • Rossel D, Tarradellas J (1991) Dehydrogenase activity of soil microflora. Significance in ecological tests. Environ Toxicol Wat Qual 6:17–33

    Article  Google Scholar 

  • Rudd JWM, Turner MA (1983) The English-Wabigoon river system: II. Suppression of mercury and selenium bioacccumulation by suspended and bottom sediments. Can J Fish Aquat Sci 40:2218–2227

    Article  Google Scholar 

  • Sayler GS, Sherrill TW, Perkins RE, Mallory LM, Shiaris MP, Pedersen D (1982) Impact of coal-cooking effluent on sediment microbial communities: a multivariate approach. Appl Environ Microbiol 44:1118–1129

    Google Scholar 

  • Schmiechen H, Wittig H, Martin S (1992) Entfernung von Schwermetallen aus Abwässern mittels Sorption am Biopolymer des Mikroorganismus Ectothiorhodospira shaposhnikovii. Bio Engineering 1:38–40

    Google Scholar 

  • Schottel JL (1978) The mercury and organomercurial detoxifying enzymes from a plasmid-bearing strain of Escherichia coli. J Biol Chem 253:4341–4349

    Google Scholar 

  • Schreiber DR, Gordon AS, Millero FJ (1985) The toxicity of copper to the marine bacterium Vibrio alginolyticus. Can J Microbiol 31:83–87

    Article  Google Scholar 

  • Schreiber DR, Millero FJ, Gordon AS (1990) Production of an extracellular copper-binding compound by the heterotrophic marine bacterium Vibrio alginolyticus. Mar Chem 28:275–284

    Article  Google Scholar 

  • Shuttleworth KL, Unz RF (1993) Sorption of heavy metals to the filamentous bacterium Thiothrix strain Al. Appl Environ Microbiol 59:1274–1282

    Google Scholar 

  • Silver S, Misra TK, Laddaga RA (1989) Bacterial resistance to toxic heavy metals. Metal Ions and Bacteria. New York, John Wiley & Sons

    Google Scholar 

  • Silver S, Misra TK (1988) Plasmid-mediated heavy metal resistances. Ann Rev Microbiol 42:717–742

    Article  Google Scholar 

  • Singleton FL, Guthrie RK (1977) Aquatic bacteria and heavy metals. I. composition of aquatic bacteria in the presence of copper and mercury salts. Wat Res 11:639–642

    Article  Google Scholar 

  • Skujins J, Oden S (1986) Sensitivity of soil dehydrogenase to the presence of low concentrations of metal ion. Proc IVISME, pp 664–667

    Google Scholar 

  • Stebbing ARD (1982) Hormesis — the stimulation of growth by low levels of inhibitors. The Science of the Total Environment 22:213–234

    Article  Google Scholar 

  • Summers AO (1986) Organization, expression, and evolution of genes for mercury resistance. Annu Rev Microbiol 40:607–634

    Article  Google Scholar 

  • Summers AO, Silver S (1978) Microbial transformations of metals. Ann Rev Microbiol 32:637–672

    Article  Google Scholar 

  • Taylor B, Oremland R (1979) Depletion of ATP in Desulfovibrio by oxyanions of group VI elements. Curr Microbiol 3:101–103

    Article  Google Scholar 

  • Timoney JF, Port J, Giles J, Spanier J (1978) Heavy metal and antibiotic resistance in the bacterial flora of sediments of New York Bight. Appl Environ Microbiol 36:465–472

    Google Scholar 

  • Titus JA, Parsons JE, Pfister RM (1980) Translocation of mercury and microbial adaptation in a model aquatic system. Bull Environ Toxicol 25:456–464

    Article  Google Scholar 

  • Torslov J (1993) Comparison of bacterial toxicity tests based on growth, dehydrogenase activity, and esterase activity of Pseudomonas fluorescens. Ecotoxicol and Environ Safety 25:33–40

    Article  Google Scholar 

  • Tsai Y-L, Olson BH (1990) Effects of Hg2+, CH3-Hg+, and temperature on the expression of mercury resistance genes in environmental bacteria. Appl Environ Microbiol 56:3266–3272

    Google Scholar 

  • Tsai Y, Tuovinen OH (1989) Influence of metals on oxygen uptake, carbon dioxide fixation, and cytochrome reduction in Nitrobacter agilis. Toxicity Assessment 4:185

    Article  Google Scholar 

  • Tubbing DM, Admiraal W (1991) Inhibition of bacterial and phytoplanktonic metabolic activity in the lower river Rhine by ditallowdimethyl-ammonium chloride. Appl Environ Microbiol 57:3616–3622

    Google Scholar 

  • Tubbing DMJ, Santhagens LR, Admiraal W, vanBeelen P (1993) Biological and chemical aspects of differences in sensitivity of natural populations of aquatic bacterial communities exposed to copper. Environ Toxicol Wat Qual 8:191–205

    Article  Google Scholar 

  • Urrutia-Mera M, Kemper K, Doyle R, Beveridge TJ (1992) The membrane-induced proton motive force influences the metal-binding ability of Bacillus subtilis cell walls. Appl Environ Microbiol 58:3837–3844

    Google Scholar 

  • Vaccaro RF, Azam F, Hodson RE (1977) Response of natural marine bacterial populations to copper: controlled ecosystem pollution experiment. Bull Mar Sci 27:17–22

    Google Scholar 

  • Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Ann Rev Biochem 41:91–128

    Article  Google Scholar 

  • Weiss AA, Murphy SD, Silver S (1977) Mercury and organomercurial resistances determined by plasmids in Staphylococcus aureus. J Bact 132:197–208

    Google Scholar 

  • Wrangstadh M, Szewzyk U, Östling J, Kjelleberg S (1990) Starvation-specific formation of a peripheral exopolysaccharide by a marine Pseudomonas sp., strain S9. Appl Environ Microbiol 56:2065–2072

    Google Scholar 

  • Yang CH, Menge JA, Cooksey DA (1993) Role of copper resistance in competitive survival of Pseudomonas fluorescens in soil. Appl Environ Microbiol 59:580–584

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reichardt, W. (1996). Ecotoxicity of Certain Heavy Metals Affecting Bacteria-Mediated Biogeochemical Pathways in Sediments. In: Calmano, W., Förstner, U. (eds) Sediments and Toxic Substances. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79890-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79890-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79892-4

  • Online ISBN: 978-3-642-79890-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics