Historical Development of X-Ray Contrast Media for Urography and Angiography

  • W. Clauss
  • U. Speck
Conference paper


This year 1995 we are celebrating the centenary of the discovery of X-rays. In 1895, W. C. Röntgen discovered the new rays and laid the foundation stone of X-ray diagnostics. Due to similar or even equal densities, many structures of the organism (e. g. vessels) could not be delineated and remained invisible. Therefore, the need for contrast media was soon recognized.


Contrast Medium Cerebral Angiogram Intravenous Urogram Thorium Nitrate Thorium Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sehrwald E (1886) Das Verhalten der Halogene gegen Röntgenstrahlen. Dtsch med Wschr 30: 477–480Google Scholar
  2. 2.
    Haschek E, Lindenthal O Th (1886) Ein Beitrag zur praktischen Verwertung der Photographie nach Röntgen. Wien Klin Wschr 9: 63–64Google Scholar
  3. 3.
    Burns JE (1915) Thorium - a new agent for pyelography. J AMA 26: 2126–2127Google Scholar
  4. 4.
    Berberich J, Hirsch S (1923) Die röntgenographische Darstellung der Arterien und Venen am lebenden Menschen. Klin Wschr 49: 2226–2228CrossRefGoogle Scholar
  5. 5.
    Moniz E, Pinto A, Lima A (1931) Le Thorotrast dans l’encéphalographie artérielle. Rev Neurol 39: 5Google Scholar
  6. 6.
    Roseno A (1929) Die intravenöse Pyelographie. Klin Wschr 25: 1165–1170CrossRefGoogle Scholar
  7. 7.
    Swick M (1929) Darstellung der Niere und Harnwege im Röntgenbild durch intravenöse Einbringung eines neuen Kontraststoffes: des Uroselectans. Klin Wschr 8: 2087–2089CrossRefGoogle Scholar
  8. 8.
    Grainger R G (1982) Intravascular contrast media - the past, the present and the future. Brit J of Radiol 55: 1–18CrossRefGoogle Scholar
  9. 9.
    Almén T (1969) Contrast agent design. Some aspects of the synthesis of water-soluble contrast agents of low osmolality. J Theoretical Biol 24: 216–226CrossRefGoogle Scholar
  10. 10.
    Katayama H, Yamaguchi K, Kozuka T, Takashima T, Seez P, Matsuura K (1990) Adverse reactions to ionic and non-ionic contrast media. Radiology 175: 621–628PubMedGoogle Scholar
  11. 11.
    Farero CD, Rossini G, Martegani A (1993) A comparison of iopamidol and ioxaglate in CT enhancement. Eur Radiol 3: 77–82Google Scholar
  12. 12.
    Dawson P, Howell M (1986) The non-ionic dimers: a new class of contrast agents. Brit J Radiol 59: 987–991PubMedCrossRefGoogle Scholar
  13. 13.
    Ringel K, Klotz E, Wenzel-Hora BI (1989) Iotrolan versus Iopamidol: A controlled, multicenter, double-blind study of lumbar and direct cervical myelograpy. Fortschr Röntgenstr und Nukl: Supplement Vol. 128: 153–157Google Scholar
  14. 14.
    Gmeinwieser JK, Wenzel-Hora BI (1993) Arteriography of extremities and penis with iotrolan 280 versus non-ionic monomers: Clinical phase II and III trials. Presentation at RSNAGoogle Scholar
  15. 15.
    Clauß W, Dinger J, Meißner C (1995) Renal tolerance of iotrolan 280 - a meta-analysis of 14 double-blind studies. In: Proceedings of the Isovist symposium: Monte Carlo, Monaco, April 29–30, Eur. Radiol 5: 79–84Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • W. Clauss
    • 1
  • U. Speck
    • 2
  1. 1.Clinical DevelopmentSchering AGBerlinGermany
  2. 2.Research LaboratoriesSchering AGBerlinGermany

Personalised recommendations