Skip to main content

Tropopause Fold Formation in an Explosive Cyclogenesis

  • Conference paper
Atmospheric Ozone as a Climate Gas

Part of the book series: NATO ASI Series ((ASII,volume 32))

  • 97 Accesses

Abstract

Under weather conditions with frontogenesis in the upper troposphere the tropopause can fold downwards and ozone-rich air from the stratosphere can thus be transported several thousand meters into the troposphere. The vertical mass exchange of stratospheric and tropospheric air in a folding event can be explained in terms of the development of the ageostrophic, vertical circulation connected to the jet streak in this region. A combination of horizontal wind shear and confluent motion in the left jet entrance region can give such a strong secondary circulation which can create very pronounced tropopause folds.

In a model simulation of an explosive cyclogenesis using a modified version of the Norwegian Limited Area Model (UBLAM), two tropopause folds developed in the left entrance region of two separate jet streaks. The large scal features of the tropopause folds were simulated quite will. One of the folds was located behind the cold front and the other ahead of the warm front, with both folds reaching down to about 600 hPa. An ageostrophic, vertical circulation caused by both confluence and horizontal wind shear seemed to create these folds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allam, R.J., and A.F. Tuck, 1984: Transport of water vapour in a stratosphere-troposphere general circulation model. 2. Trajectories. Quart. J. Roy. Meteor. Soc., 110, 357–392.

    Google Scholar 

  • Ancellet, G., J. Pelon, M. Beekmann, A. Papayannis, and G. Megie, 1991: Ground based lidar studies of ozone changes between the stratosphere and the troposphere. J. Geophys. Res., 96, 22401–22421.

    Article  Google Scholar 

  • Bertin, F., P.V. Veithoven, A. Crèmieu, R. Ney, R. Beugin, 1994: Observation of a tropopause fold in the exit region of a jet streak. Proceedings volume III, The life cycles of extratropical cyclones. An international symposium, Bergen, Norway, June 1994, p. 385–389.

    Google Scholar 

  • Bowell, E.V., E.F. Danielsen, S. Ismail, G.L. Gregory, and S. M. Bleck, 1987: Tropopause fold structure determined from airborne lidar and in situ measurements. J. Geophys. Res., 92, 2112–2120.

    Article  Google Scholar 

  • Carlson, T.N., 1991: Mid-latitude weather systems. Ch. 14 and 15, 507 pp., Harper Collins Academic, The University Press, Cambridge.

    Google Scholar 

  • Cox, B., M. Bithell, and L.J. Gray, 1994: A general circulation model study of the transfer of air between the stratosphere and the troposphere at mid-latitudes. Proceedings volume III, The life cycles of extratropical cyclones. An international symposium, Bergen, Norway, June 1994, p. 420–425.

    Google Scholar 

  • Danielsen, E.F., 1964: Report on Project Springfield DASA 1517, HQ, Defense Atomic Support Agency, Washingthon D.C. 20301, 97 pp.

    Google Scholar 

  • Danielsen, E.F., 1968: Stratospheric-tropospheric exhange based on radioactivity, ozone and potential vorticity. J. Atmos. Sci., 25, 502–518.

    Article  Google Scholar 

  • Danielsen, E.F., and V.A. Mohnen, 1977: Project Dustorm report: Ozone transport, in situ measurements and meteorological analyses of tropopause folding. J. Geophys. Res., 82, 5867–5877.

    Article  Google Scholar 

  • Danielsen, E.F., R.S. Hipkind, S.E. Gaines, G.W. Sachse, G.L. Gregory, G.F. Hill, 1987: Three-dimensional analysis of potential vorticity associated with tropopause folds and observed variations of ozone and carbon monoxide. J. Geophys. Res., 1992, 2103–2111.

    Article  Google Scholar 

  • GrønÃ¥s, S., and O.E. Hellevik, 1982: A limited area prediction model at the Norwegian Meteorological Institute. Tech. Rep., 61, The Norwegian Meteorological Institute, P. b. 43, 0313 Oslo.

    Google Scholar 

  • GrønÃ¥s, S., A. Foss, and M. Lystad, 1987: Numerical simulations on polar lows in the Norwegian Sea. Tellus 39 A, 334–353.

    Article  Google Scholar 

  • Hoskins, B.J., and F.P. Bretherton, 1972: Atmospheric frontogenesis models; mathematical formulation and Solution., J. Atmos. Sci., 29, 11–37.

    Article  Google Scholar 

  • Hoskins, B.J., M.E. McIntyre and A.W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Meteor. Soc., 111, 877–946.

    Article  Google Scholar 

  • Keyser, D., and M.J. Pecknick, 1985: A two-dimensional primitive equation model of frontogenesis forced by confluence and horizontal shear., J. Atmos. Sci., 42, 1259–1282.

    Article  Google Scholar 

  • Kleinschmidt, E., 1951: Untersuchung eines Tropopausentrichtes mit Hilfe der Ertelschen Wirbelinvarianten Z ( Investigation of a tropopause funnel using Ertel’s PV ). Annalen der Meteorologie, 4, 131–132.

    Google Scholar 

  • Kleinschmidt, E., 1957: Cyclones and anticyclones. Chap. IV in Dynamic Meteorology by A. Eliassen and E. Kleinschmidt. Handbuch der Physik, 48, S.Flügge, Ed. Springer-Verlag, 1–154.

    Google Scholar 

  • Nordeng, T.E., 1986: Parameterisation of Physical Processes Three-Dimensional Numerical Weather Prediction Model. Tech. Rep., 65, The Norwegian Meteorological Institute, P. b. 43, 0313 Oslo.

    Google Scholar 

  • Price, J.D., and G. Vaughan, 1993: On the potential for stratosphere-troposphere exchange in cut-off-low systems. Quart. J. Roy. Meteor. Soc., 119, 343–365.

    Article  Google Scholar 

  • Reed, R.J., and F. Sanders, 1953: An investigation of the development of a mid-tropospheric frontal zone and its associated vorticity field. J. Meteor., 10, 338–349.

    Article  Google Scholar 

  • Reed, R.J., 1955: A study of a characteristic type of upper-level frontogenesis. J. Meteor., 12, 226–237.

    Article  Google Scholar 

  • Reed, R.J., and E.F. Danielsen, 1959: Fronts in the vicinity of the tropopause. Arch. Meteor. Geophys. Bioklim., 11, 1–17.

    Article  Google Scholar 

  • Shapiro, M.A., 1981: Frontogenesis and geostrophically forced secondary circulation in the vicinity of jet stream frontal zone systems. J. Atmos. Sci., 38, 954–973.

    Article  Google Scholar 

  • Shapiro, M.A., and D. Keyser, 1990: Fronts,jet streams and the tropopause. Ch. 10, E. Palmén Memorial Volume, Amer. Met. Soc., Boston.

    Google Scholar 

  • Sundqvist, H., E Berge, and J.E. Kristjansson, 1989: Condensation and cloud parameterisation studies with a mesoscale NWP model. Mon. Wea. Rew., 117, 1641–1657.

    Article  Google Scholar 

  • Thorstensen, I.K., 1994: Master Degree Thesis, University of Bergen, Allegt. 70, N-5007 Bergen, Norway

    Google Scholar 

  • Vaughan, G., 1988: Stratosphere-troposphere exchange of ozone. Tropospheric ozone, I.S.A. Isaksen, Ed., 125–135.

    Google Scholar 

  • Vaughan, G., J.D. Price and A. Howells, 1994: Transport into the troposphere in a tropopause fold. Quart. J. Meteor. Soc., 120, 1085–1103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thorstensen, I.K. (1995). Tropopause Fold Formation in an Explosive Cyclogenesis. In: Wang, WC., Isaksen, I.S.A. (eds) Atmospheric Ozone as a Climate Gas. NATO ASI Series, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79869-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79869-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79871-9

  • Online ISBN: 978-3-642-79869-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics