Skip to main content

Photochemical Hole Burning and Photooptical Properties of Doped Dye Molecules in Linear Polymers

  • Chapter
Polymers as Electrooptical and Photooptical Active Media

Part of the book series: Macromolecular Systems — Materials Approach ((MACROSYSTEMS))

Abstract

Photochemical hole burning (PHB) is a phenomenon where a stable dip or a hole is created in the absorption spectrum of a chromophore by site-selective excitation with a narrow-band light such as a laser. The phenomenon of PHB was discovered by two Russian groups in 1974 [1, 2]. The site-selective excitation is possible when the absorption line width of each chromophore (this is called, the “homogeneous width”, Γh) is smaller than the width of the whole absorption band profile (called the “inhomogeneous width”, Γi). In such a case, the whole absorption line is called, the “inhomogeneous band”. This situation is often realized for doped dye molecules in amorphous matrices like polymers at low temperatures because the optical linewidth of each chromophore decreases drastically as temperature becomes lower and because the resonant frequency of each chrompohore in amorphous solids has an inhomogeneous distribution due to the difference in its microenvironment (Fig. 1.1). The sharp absorption line of individual chromophore at low temperatures is called the “zero-phonon line”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gorokhovskii AA, Kaarli RK, Rebane LA (1974) JETP Lett 20: 216

    Google Scholar 

  2. Kharlamov BM, Personov RI, Bykovskaya LA (1974) Opt Commun 12: 191

    Article  CAS  Google Scholar 

  3. Friedrich J, Haarer D (1984) Angew Chemie 23: 113

    Article  Google Scholar 

  4. Moerner WE (ed) (1988) Persistent spectral hole-burning: science and applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  5. Horie K, Furusawa A (1992) In: Rabek JF (ed) Progress in photochemistry and photo-physics. CRC Press, Boca Raton, vol 5, chap 2

    Google Scholar 

  6. Castro G, Haarer D, Macfarlane RM, Trommsdorf HP (1978) Frequency selective optical data storage system. US Patent No 4, 101: 976

    Google Scholar 

  7. Bjorklund GC, Lvenson MD (1980) Laser pulse shaping device based on Fourier synthesis using optical anisotropies produced by spectral hole burning. IBM Tech Discl Bull 23: 2517

    Google Scholar 

  8. Schatz P, Bogner U, Maier M (1986) Appl Phys Lett 49: 1132

    Article  Google Scholar 

  9. Case SK (1979) Appl Opt 18: 1890

    Article  CAS  Google Scholar 

  10. Renn A, Meixner J, Wild UP, Burkhalter FA (1985) Chem Phys 93: 157

    Article  CAS  Google Scholar 

  11. Wild UP, Bucher SE, Burkhalter FA (1985) Appl Opt 24: 1526

    Article  CAS  Google Scholar 

  12. Wild UP, Caro CD, Bernet S, Traber M, Renn A (1991) J Lumin 48 0026 49: 335

    Article  Google Scholar 

  13. Murase N, Horie K (1992) Rep Prog Polym Phys Jpn 35: 439

    Google Scholar 

  14. Boxer SG, Lockhart DJ, Middendorf TR (1986) Chem Phys Lett 123: 476

    Article  CAS  Google Scholar 

  15. Rebane LA, Gorokhovski AA, Kikas JV (1982) Appl Phys B29: 235

    Article  Google Scholar 

  16. Furusawa A, Horie K, Mita I (1989) Chem Phys Lett 161: 227

    Article  CAS  Google Scholar 

  17. Köhler W, Friedrich J (1987) Phys Rev Lett 59: 2199

    Article  Google Scholar 

  18. Furusawa A, Horie K (1991) J Chem Phys 94: 80

    Article  CAS  Google Scholar 

  19. Horie K, Ikemoto M, Suzuki T, Machida S, Yamashita T, Murase N (1992) Chem Phys Lett 195: 563

    Article  CAS  Google Scholar 

  20. Murase N, Ikemoto M, Horie K (1993) J Chem Phys 99: 6313

    Article  CAS  Google Scholar 

  21. Suzuki T, Horie K, Yamashita T (1993) Chem Mater 5: 366

    Article  CAS  Google Scholar 

  22. Völker S, Macfarlane RM, Genack AZ, Trommsdorff HP, van der Waals JH (1978) J Chem Phys 80: 3496

    Google Scholar 

  23. Bjorklund GC (1980) Opt Lett 5: 15

    Article  CAS  Google Scholar 

  24. Moerner WE, Gehrtz M, Huston L (1984) J Phys Chem 88: 6459

    Article  CAS  Google Scholar 

  25. Furusawa A, Horie K, Kuroki K, Mita I (1989) J Appl Phys 66: 6041

    Article  CAS  Google Scholar 

  26. Völker S, Macfarlane RM (1979) IBM J Res Dev 23: 547

    Article  Google Scholar 

  27. Graf F, Hong HK, Nazzal A, Haarer D (1978) Chem Phys Lett 59: 217

    Article  CAS  Google Scholar 

  28. Lee HW, Gehrtz M, Marinero EE, Moerner WE (1985) Chem Phys Lett 118: 611

    Article  CAS  Google Scholar 

  29. Carter TP, Bräuchle C, Lee VY, Manavi M, Moerner WE (1987) J Phys Chem 91: 3998

    Article  CAS  Google Scholar 

  30. Hochstrasser RM, King DS (1975) J Am Chem Soc 97: 4760

    Article  CAS  Google Scholar 

  31. Adamson G, Gradl G, Köhler BE (1989) J Chem Phys 90: 3038

    Article  CAS  Google Scholar 

  32. Machida S, Horie K, Yamashita T (1992) Appl Phys Lett 60: 286

    Article  CAS  Google Scholar 

  33. Jankowiak R, Small GJ (1987) Science 237: 618

    Article  CAS  Google Scholar 

  34. Zollfrank J, Friedrich J, Tani T (1989) Polymer 30: 231

    Article  CAS  Google Scholar 

  35. Maslov VG (1977) Opt Spectrosk 43: 388

    CAS  Google Scholar 

  36. Suga T, Furusawa A, Uchikawa K (1993) Chem Phys Lett 210: 411

    Article  CAS  Google Scholar 

  37. Alshits EI, Kharlamov BM, Personov RI (1988) Opt Spectrosk 65: 548

    CAS  Google Scholar 

  38. Iannone M, Scott GW, Brinza D, Coutler DR (1986) J Chem Phys 85: 4863

    Article  CAS  Google Scholar 

  39. Prass B, von Borczyskowski C, Stehlik D (1987) J Lumin 38: 48

    Article  CAS  Google Scholar 

  40. Fearey BL, Stout RP, Small GJ (1983) J Phys Chem 87: 3590

    Article  CAS  Google Scholar 

  41. Dubs M, Ermanni L, Günthard HH (1982) J Mol Spectr 91: 458

    Article  CAS  Google Scholar 

  42. Jaaniso R, Bill H (1991) Europhys Lett 16: 569

    Article  CAS  Google Scholar 

  43. Hirao K, Todoroki T, Soga N (1992) J Lumin 55: 217

    Article  Google Scholar 

  44. Winnacker A, Shelby RM, Macfarlane RM (1985) J de Phys C7: 543

    Google Scholar 

  45. Sakoda K, Kominami K, Iwamoto M (1988) Jpn J Appl Phys 27: L1304

    Article  CAS  Google Scholar 

  46. Furusawa A, Horie K, Kuroki K, Mita I (1989) J Appl Phys 66: 6041

    Article  CAS  Google Scholar 

  47. Furusawa A, Horie K, Suzuki T, Machida S, Mita I (1990) Appl Phys Lett 57: 141

    Article  CAS  Google Scholar 

  48. Arnold S, Liu CT, Whitten WB, Ramsey JM (1991) Opt Lett 16: 420

    Article  CAS  Google Scholar 

  49. Winnacker A, Shelby RM, Macfarlane RM (1985) Opt Lett 10: 350

    Article  CAS  Google Scholar 

  50. Machida S, Horie K, Yamashita T, Furusawa A (1993) J Phys Chem 97: 8234

    Article  CAS  Google Scholar 

  51. Suzuki H, Shimada T (1991) Appl Phys Lett 59: 1814

    Article  CAS  Google Scholar 

  52. Mahcida S, Horie K, Yamashita T (1993) J Lumin 56: 85

    Article  Google Scholar 

  53. Takahashi J, Tsuchiya J, Kawasaki K (1993) Chem Phys Lett 209: 479

    Article  CAS  Google Scholar 

  54. Nishimura Y, Kaneko Y, Arai T, Sakuragi H, Tokumaru K, Kiten M, Yamamura S, Matsunaga D (1990) Chem Lett 1935

    Google Scholar 

  55. Moerner WE, Levenson MD (1985) J Opt Soc Amer B2: 915

    Article  CAS  Google Scholar 

  56. Lenth W, Moerner WE (1986) Opt Commun 58: 249

    Article  CAS  Google Scholar 

  57. Murase N, Horie K, Terao M, Ojima M (1992) J Opt Soc Amer B9: 998

    Article  CAS  Google Scholar 

  58. Murase N, Horie K (1993) Chem Phys Lett 209: 42

    Article  CAS  Google Scholar 

  59. Murase N, Horie K (1993) Jpn J Appl Phys 33: 1053

    Article  Google Scholar 

  60. Feary BL, Carter TP, Small GJ (1986) Chem Phys 101: 279

    Article  Google Scholar 

  61. Kador L, Haarer D, Personov R (1987) J Chem Phys 86: 5300

    Article  CAS  Google Scholar 

  62. Sesselman TH, Richter W, Haarer D (1987) J Lumin 36: 263

    Article  Google Scholar 

  63. Bogner U, Beck K, Maier M (1985) Appl Phys Lett 46: 534

    Article  CAS  Google Scholar 

  64. Meixner AJ, Renn A, Bucher SE, Wild UP (1986) J Phys Chem 90: 6777

    Article  CAS  Google Scholar 

  65. Wild UP, Caro CD, Bernet S, Traber M, Renn A (1991) J Lumin 48 0026 49: 335

    Article  Google Scholar 

  66. Schwörer H, Gygax H, Rebane A, Wild UP (1992) Tec Dig OSA 22: 135

    Google Scholar 

  67. Moerner WE, Kador L (1989) Phys Rev Lett 62: 2535

    Article  CAS  Google Scholar 

  68. Orrit M, Bernard J (1990) Phys Rev Lett 65: 2716

    Article  CAS  Google Scholar 

  69. Moerner WE, Basché T (1993) Angew Chemie Int Ed Engl 32: 457

    Article  Google Scholar 

  70. Ambrose WP, Basché T, Moerner WE (1991) J Chem Phys 95: 7150

    Article  CAS  Google Scholar 

  71. Wild UP, Güttler F, Pirotta M, Renn A (1992) Chem Phys Lett 193: 451

    Article  CAS  Google Scholar 

  72. Bernard J, Fleury L, Talon H, Orrit M (1993) J Chem Phys 98: 850

    Article  CAS  Google Scholar 

  73. Basché T, Moerner WE, Orrit M, Talon H (1992) Phys Rev Lett 69: 1516

    Article  Google Scholar 

  74. Tchénio P, Myers AB, Moerner WE (1993) J Phys Chem 97: 2491

    Article  Google Scholar 

  75. Güttler F, Sepiol J, Plakhotnik T, Mitterdorfer A, Renn A, Wild UP (1993) J Lumin 56: 26

    Article  Google Scholar 

  76. Basché T, Moerner WE (1992) Nature 355: 335

    Article  Google Scholar 

  77. Orrit M, Bernard J, Zumbusch A, Personov RI (1992) Chem Phys Lett 196: 595

    Article  CAS  Google Scholar 

  78. Basché T, Ambrose WP, Moerner WE (1992) J Opt Soc Amer B9: 829

    Article  Google Scholar 

  79. Abella ID, Kurmit NA, Hartmann SR (1966) Phys Rev 141: 391

    Article  CAS  Google Scholar 

  80. Mossberg TW (1982) Opt Lett 7: 77

    Article  CAS  Google Scholar 

  81. Mitsunaga M (1991) Oyo Buturi 60: 21

    CAS  Google Scholar 

  82. Babbitt WR, Mossberg TW (1986) Appl Opt 25: 962

    Article  CAS  Google Scholar 

  83. Bai YS, Babbitt WR, Carlson NW, Mossberg TW (1984) Appl Phys Lett 45: 714

    Article  Google Scholar 

  84. Rebane A, Kaarli R, Saari P, Anijalg A, Timpmann K (1983) Opt Commun 47: 173

    Article  CAS  Google Scholar 

  85. Saikan S, Nakabayashi T, Knematsu Y, Tato N (1988) Phys Rev B38: 7777

    CAS  Google Scholar 

  86. Saikan S, Kishida T, Kanaematsu Y, Aota H, Harada A, Kamachi N (1990) Chem Phys Lett 166: 358

    Article  CAS  Google Scholar 

  87. Nakatsuka H, Sugiyama H, Matsumoto Y (1987) J Lumin 38: 31

    Article  CAS  Google Scholar 

  88. Carlson NW, Rothberg LJ, Yodh AG, Babbitt WR, Mossberg TW (1983) Opt Lett 8: 483

    Article  CAS  Google Scholar 

  89. Kim MK, Kachru R (1987) J Opt Soc Amer B4: 305

    Article  CAS  Google Scholar 

  90. Yano R, Mitsunaga M, Uesugi N (1992) J Opt Soc Amer B9: 992

    Article  CAS  Google Scholar 

  91. Xu EY, Kröll S, Huestis DL, Kachru, Kim MK (1990) Opt lett 15: 562

    Article  CAS  Google Scholar 

  92. Saikan S, Kishida T, Imaoka A, Uchikawa K, Furusawa A, Oosawa H (1989) Opt Lett 14: 841

    Article  CAS  Google Scholar 

  93. Uhcikawa K, Ohsawa H, Suga T, Saikan S (1991) Opt Lett 16: 13

    Article  Google Scholar 

  94. Gygax H, Rebane A, Schwörer H, Wild UP (1992) 1992 Tec Dig OSA 22: 74

    Google Scholar 

  95. Todorov T, Tomova N, Nikolova L (1983) Opt Commin 47. 123

    Article  CAS  Google Scholar 

  96. Todorov T, Nikolova L, Tomova N (1984) Appl Opt 23: 4309

    Article  CAS  Google Scholar 

  97. Todorov T, Nikolova L, Tomova N (1984) Appl Opt 23: 4588

    Article  CAS  Google Scholar 

  98. Lückemeyer T, Franke H (1991) Polym Eng and Sci 31: 912

    Article  Google Scholar 

  99. Lückemeyer T, Franke H (1988) Appl Phys Lett 53: 2017

    Article  Google Scholar 

  100. Fujiwara H (1990) Oyo Buturi 59: 756

    Google Scholar 

  101. Kirkby CJG, Cush R, Bennion I (1985) Opt Commun 56: 288

    Article  CAS  Google Scholar 

  102. Silberberg Y, Bar-Joseph I (1981) Opt Commun 39: 265

    Article  CAS  Google Scholar 

  103. Yariv A (1978) IEEE J Quantum Electron QE-14: 650

    Google Scholar 

  104. Nakatsuka H, Masuoka D, Yamamoto T (1991) Opt Commun 80: 215

    Article  CAS  Google Scholar 

  105. Fujiwara H, Nakagawa K (1985) Opt Commun 55: 386

    Article  CAS  Google Scholar 

  106. Nakagawa K, Fujiwara H (1989) Opt Commun 70: 73

    Article  CAS  Google Scholar 

  107. Tompkin WR, Malcuit MS, Boyd RW, Sipe JE (1987) J Opt Soc Amer B6: 757

    Google Scholar 

  108. Kramer MA, Tompkin WR, Boyd RW (1986) Phys Rev A34: 2026

    Article  CAS  Google Scholar 

  109. Günter P, Huignard JP (eds) (1988) Photorefractive materials and their applications. Springer, Berlin Heidelberg New York, vol 1

    Google Scholar 

  110. Moerner WE, Silence SM (1994) Chem Rev 94: 127

    Article  CAS  Google Scholar 

  111. Schildkraut JS (1991) Appl Phys Lett 58: 340

    Article  CAS  Google Scholar 

  112. Ducharme S, Scott JC, Twieg RJ, Moerner WE (1991) Phys Rev Lett 66: 1846

    Article  CAS  Google Scholar 

  113. Tamura K, Padias AB, Hall HD Jr, Peyghambarian N (1992) Appl Phys Lett 60: 1803

    Article  CAS  Google Scholar 

  114. Cui Y, Zhang Y, Prasad PN, Schildkraut JS, Williams J (1992) Appl Phys Lett 61: 2132

    Article  CAS  Google Scholar 

  115. Kawakami T, Sonoda N (1993) Appl Phys Lett 62: 2167

    Article  CAS  Google Scholar 

  116. Silence SM, Walsh CA, Scott JC, Moerner WE (1992) Appl Phys Lett 61: 2967

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horie, K., Machida, S. (1996). Photochemical Hole Burning and Photooptical Properties of Doped Dye Molecules in Linear Polymers. In: Shibaev, V.P. (eds) Polymers as Electrooptical and Photooptical Active Media. Macromolecular Systems — Materials Approach. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79861-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79861-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79863-4

  • Online ISBN: 978-3-642-79861-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics