Advertisement

Candida maltosa

  • Stephan Mauersberger
  • Moriya Ohkuma
  • Wolf-Hagen Schunck
  • Masamichi Takagi

Abstract

More than 30 years have passed since the first description of the yeast species Candida (C.) maltosa by Komagata et al. (1964a,b). Since then, C. maltosa has become of considerable academic and commercial interest. Now, together with some related Candida species and Yarrowia (Y.) lipolytica (cf. Barth and Gaillardin, Chap. 10, this Vol.), it is best known for its ability to grow on a wide variety of substrates including n-alkanes, fatty acids, or carbohydrates, and is therefore intensively investigated in its physiology, biochemistry, and molecular genetics. More recent investigations also use these yeast species for the study of fundamental cellular processes such as protein targeting, organelle biosynthesis, and drug resistance.

Keywords

Fatty Alcohol Auxotrophic Mutant Phenol Hydroxylase Autonomously Replicate Sequence LEU2 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adesnik M, Darnell JE (1972) Biogenesis and characterization of histone messenger RNA in HeLa cells. J Mol Biol 67: 397–406PubMedGoogle Scholar
  2. Ahearn DG, Crow SA, Berner NH, Meyers SP (1976) Microbiological cycling of oil in estuarine marshlands. In: Wiley M (ed) Estuarine processes, vol 1 USES, Stresses and adaptation to the estuary. Academic Press, New York, pp 483–492Google Scholar
  3. Ahearn DG, Holzschu D, Crow SA, Ibrahim AN (1979) Comparative studies on the potential pathogenicity of Candida tropicalis and Candida maltosa. In: Garattini S, Paglialunga S, Scrimshaw NS (eds) Single cell protein: safety for animals and human feeding. Pergamon Press, Oxford, pp 44–46Google Scholar
  4. Ardies CM, Lasker JM, Bloswick BP, Lieber CS (1987) Purification of NADPH: cytochrome c (cytochrome P-450) reductase from hamster liver microsomes by detergent extraction and affinitiy chromatography. Anal Biochem 162: 39–46PubMedGoogle Scholar
  5. Artamonova VG, Svitina NN (1991) On the current issues of bronchopulmonary diseases prevention among the workers engaged in industrial biotechnology (Russ). Gig Tr Prof Zabol 3:31–33PubMedGoogle Scholar
  6. Artamonova VG, Kuznetsov NF, Shleikin AG (1993) Experimental justification of the approach of medical genetics to individual prophylaxis of occupational diseases of respiratory organs. Cent Eur J Public Health 1: 16–18Google Scholar
  7. Atomi H, Yu C, Hara A, Matsui T, Naito N, Kamasawa N, Osumi M, Ueda M, Tanaka A (1994) Characterization of a dicarboxylic acid-producing mutant of the yeast Candida tropicalis. J Ferment Bioeng 77: 205–207Google Scholar
  8. Asubel FM et al. (eds) (1994) Current protocols in molecular biology. Current protocols, Green Publishing, John Wiley, New York, vol 2, chap 13Google Scholar
  9. Avetisova SM (1991) Foundation of the purification method and biochemical characterization of cytochrome P450 of alkane-oxidizing yeast Candida maltosa. Dissertation, MoscowGoogle Scholar
  10. Avetisova SM, Davidov ER (1993) Yeast cytochrome P450 substrate specificity and conformation of alkanes with different structure. 2nd Int Symp Cytochrome P450 Microorganisms Plants, Tokyo, June 13–17, 1993, Abstr, p 17Google Scholar
  11. Avetisova SM, Sokolov YI, Kozlov VI, Davydov RM, Davidov ER (1985) The induction of cytochrome P-450 two forms in Candida yeast by n-alkanes of different chain length. In: Vereczky L, Magyar K (eds) Cytochrome P-450 — biochemistry, biophysics and induction. Akademiai Kiado, Budapest, pp 455–458Google Scholar
  12. Avetisova SM, Popova LA, Davidov ER (1990) Two step induction of cytochrome P-450 in Candida maltosa yeast. Biocatalysis 4: 61Google Scholar
  13. Avetisova SM, Popova LA, Davydov RM, Davidov ER (1993) Cytochrome b5 from Candida maltosa: physico-chemical properties. 2nd Int Symp Cytochrome P450 Microorganisms Plants, Tokyo, June 13–17, 1993, Abstr, p 40Google Scholar
  14. Babel W (1979) Bewertung von Substraten für das mikrobielle Wachstum auf der Grundlage ihres Kohlenstoff/Energie-Verhältnisses. Z Allg Mikrobiol 19: 671–677PubMedGoogle Scholar
  15. Babel W (1980) Mischsubstratfermentationen — ein energetisch begründetes Konzept. Acta Biotechnol 0: 61–64Google Scholar
  16. Babel W (1986) Theoretische Grundlagen des Auxiliarsubstratkonzeptes und seine praktischen Konsequenzen in biotechnischen Prozessen. Acta Biotechnol 6: 313–323Google Scholar
  17. Baraji VN, Logatshova IA, Tsvigun IV, Truchatshova TV, Zinchenko AI, Shkumatov VM (1990) Patent Application USSR N1708845Google Scholar
  18. Barnett JA, Payne RW, Yarrow D (1979) A guide to identifying and classifying yeasts. Cambridge University Press, CambridgeGoogle Scholar
  19. Barnett JA, Payne RW, Yarrow D (1983) Yeasts: characteristics and identification. Cambridge University Press, CambridgeGoogle Scholar
  20. Barns SM, Lane DJ, Sogin ML, Bibeau C, Weisburg WG (1991) Evolutionary relationships among pathogenic Candida species and relatives. J Bacteriol 173: 2250–2255PubMedGoogle Scholar
  21. Bassel J, Phaff HJ, Mortimer RK, Miranda M (1978) Examination of hydrocarbon utilizing mutants of Saccharomyces cerevisiae. Int J Syst Bacteriol 28: 427–432Google Scholar
  22. Bassel JB, Mortimer RK (1982) Genetic and biochemical studies on n-alkane non-utilizing mutants of Saccharomycopsis lipolytica. Curr Genet 5: 77–88Google Scholar
  23. Bassel JB, Mortimer RK (1985) Identification of mutations preventing n-hexadecane uptake among 26 n-alkane non-utilizing mutants of Yarrowia (Saccharomycopsis) lipolytica. Curr Genet 9: 579–586Google Scholar
  24. Bauch J, Koslova LI, Sobek K, Triems K, Meschtschankin GI, Roschkova MI (1978) Verfahren zur Gewinnung von “fermosin”-Futterhefe aus Erdöldestillaten. Chem Techn 30: 284–287Google Scholar
  25. Bayer C, Iske U, Glombitza F, Nagel B (1985) Spektralphotometrische in-situ-Messungen der diffusen Reflexion bei der mikrobiellen Kohlenwasserstoffwandlung. Acta Biotechnol 5: 197–202Google Scholar
  26. Becher D, Böttcher F (1983) The cell type of Rhodosporidium toruloides after protoplast fusion between strains of identical and opposite mating type. Curr Microbiol 9: 297–300Google Scholar
  27. Becher D, Oliver SG (1995) Transformation of Candida maltosa by electroporation. Methods Mol Biol 47: 291–302PubMedGoogle Scholar
  28. Becher D, Wedler H, Schulze H, Bode R, Kasüske A, Samsonova I (1991) Correlation of biochemical blocks and genetic lesions in leucine auxotrophic strains of the imperfect yeast Candida maltosa. Mol Gen Genet 227: 361–368PubMedGoogle Scholar
  29. Becher D, Schulze S, Kasüske A, Schulze H, Samsonova IA, Oliver SG (1994) Molecular analysis of a leu2(-) mutant of Candida maltosa demonstrates the presence of multiple alleles. Curr Genet 26: 208–216PubMedGoogle Scholar
  30. Becher D, Schulze S, Kasüske A, Stoll R, Wedler H, Oliver SG (1995) Chromosome polymorphism close to the Cm-ADE1 locus of Candida maltosa. Mol Gen Genet 247: 591–602PubMedGoogle Scholar
  31. Belov AP, Davidova EG (1982) Lipid granules as a compartment of lipid synthesis in the yeast cell (Russ). Mikrobiologiya 51: 302–307Google Scholar
  32. Belov AP, Guselnikova TV (1988) The effect of peptides on phosphatidylinositol metabolism in Candida (Russ). Mikrobiologiya 57: 1042–1043Google Scholar
  33. Belov AP, Toneva-Davidova EG (1983) Co2+ accumulation and intracellular distribution during yeast growth. In: Environmental regulation of microbial metabolism. FEMS Symposium, Pushchino, USSR, 1983, Abstr, p 202Google Scholar
  34. Belov AP, Davidova EG, Rachinskii VV (1976) Isolation of vacuoles from Candida tropicalis. Mikrobiologiya 45: 852–858Google Scholar
  35. Belov AP, Loginova TM, Tyurin VS, Gololobov AD (1983) The composition and localization on the cell wall of substances secreted by the Candida guilliermondii yeast cultivated on a hydrocarbon-containing medium. Prikl Biokhim Mikrobiol 19: 98–103Google Scholar
  36. Belov AP, Davidova EG, Rachinskii VV (1985) Cobalt distribution studied in the cells of Candida maltosa. Mikrobiologiya 54: 970–973Google Scholar
  37. Belov AP, Guselnikova TV, Gradova NB (1991) Adaptive changes in the nitrogen metabolism of yeasts due to consumption of peptides of a yeast autolysate (in Russian with English Translation). Appl Biochem Microbiol (Prikl Biokhim Mikrobiol) 26: 560–565Google Scholar
  38. Bennetzen JL, Hall BD (1982) Codon selection in yeast. J Biol Chem 257: 3026–3031PubMedGoogle Scholar
  39. Bergmann H, Voigt B, Seidel H, Meisgeier G (1987) Einfluß von Lipidfraktionen mikrobieller Herkunft auf die Wasserausnutzung in der biologischen Stoffproduktion von Kulturpflanzen. Acta Biotechnol 7: 201–206Google Scholar
  40. Berner NH, Ahearn DG, Cook WL (1975) Effects of hydrocarbonoclastic yeasts on pollutant oil and the environment. In: Bourquin AW, Ahearn DG, Meyers SP (eds) Ecol Res Ser EPA-660/3–75001. US Environmental Protection Agency, Corvallis, pp 199–219Google Scholar
  41. Bizzi A, Veneroni E, Tacconi MT, Codegoni AM, Pagani R, Cini M, Garattini S (1980) Accumulation and metabolism of uneven fatty acids present in single cell protein. Toxicol Lett 5: 227–240PubMedGoogle Scholar
  42. Blasig R, Schunck W-H, Jockisch W, Franke P, Müller H-G (1984) Degradation of long-chain n-alkanes by the yeast Lodderomyces elongisporus I. Products of alkane oxidation in whole cells. Appl Microbiol Biotechnol 19: 241–246Google Scholar
  43. Blasig R, Mauersberger S, Riege P, Schunck W-H, Jockisch W, Franke P, Müller H-G (1988) Degradation of long-chain n-alkanes by the yeast Candida maltosa. II. In vitro oxidation of n-alkanes and intermediates using microsomal membrane fractions. J Appl Microbiol Biotechnol 28: 589–597Google Scholar
  44. Blasig R, Huth J, Franke P, Borneleit P, Schunck W-H, Müller H-G (1989) Degradation of long-chain n-alkanes by the yeast Candida maltosa III. Effect of solid n-alkanes on cellular fatty acid composition. J Appl Microbiol Biotechnol 31: 571–576Google Scholar
  45. Bley T, Heinritz B, Steudel A, Stichel E, Glombitza F, Babel W (1980) Yield coefficients in dependence on milieu conditions and cell states. I. Synchronized batch growth of a yeast. Z Allg Mikrobiol 20: 283–286PubMedGoogle Scholar
  46. Bode R (1991) Valine inhibition of beta-isopropylmalate dehydrogenase takes part in the regulation of leucine biosynthesis in Candida maltosa. Antonie Leeuwenhoek J Microbiol 60: 125–130Google Scholar
  47. Bode R, Birnbaum D (1981) Aggregation and separability of the shikimate pathway enzymes in yeasts (Germ). Z Allg Mikrobiol 21: 417–422PubMedGoogle Scholar
  48. Bode R, Birnbaum D (1984) Characterization of three aromatic amino transferases from Candida maltosa (Germ). Z Allg Mikrobiol 24: 67–75Google Scholar
  49. Bode R, Birnbaum D (1986) Threonine dehydratase activity from several yeast species is activated and affected by phosphate. FEMS Microbiol Lett 37: 369–377Google Scholar
  50. Bode R, Birnbaum D (1987) D-amino acid oxidase, aromatic L-amino aminotransferase, and aromatic lactate dehydrogenase from several yeast species: comparison of enzyme activities and enzyme specificities. Acta Biotechnol 7: 221–225Google Scholar
  51. Bode R, Birnbaum D (1988) Purification and properties of two branched-chain amino acid aminotransferases from the yeast Candida maltosa. Biochem Physiol Pflanz 183: 417–424Google Scholar
  52. Bode R, Birnbaum D (1989) Specificity of glyphosate action in Candida maltosa. Biochem Physiol Pflanz 184: 163–170Google Scholar
  53. Bode R, Birnbaum D (1991a) Enzymatic production of indolepyruvate and some of its methyl and fluoro-derivatives. Acta Biotechnol 11: 387–393Google Scholar
  54. Bode R, Birnbaum D (1991b) Regulation of chorismate mutase activity of various yeast species by aromatic amino acids. Antonie Leeuwenhoek J Microbiol 59: 9–13Google Scholar
  55. Bode R, Birnbaum D (1991c) Some properties of the leucine-biosynthesizing enzymes from Candida maltosa. J Basic Microbiol 31: 21–26Google Scholar
  56. Bode R, Casper P (1983) Allgemeine Kontrolle der Aminosäurebiosynthese in Mutanten von Candida sp. EH15/D. Z Allg Mikrobiol 23: 419–427PubMedGoogle Scholar
  57. Bode R, Casper P, Kunze G (1983) Auslösung einer allgemeinen Kontrolle der Aminosäurebiosynthese bei Candida sp. EH15/D durch Amitrol. Biochem Physiol Pflanz 178: 457–468Google Scholar
  58. Bode R, Melo C, Birnbaum D (1984a) Inhibition of tyrosine-sensitive 3-deoxy-D-arabinose-heptulosonate 7-phosphate synthase by glyphosate in Candida maltosa. FEMS Microbiol Lett 23: 7–10Google Scholar
  59. Bode R, Melo C, Birnbaum D (1984b) Enzymological basis for glyphosate action in Candida maltosa. Biochem Physiol Pflanz 179: 775–783Google Scholar
  60. Bode R, Melo C, Birnbaum D (1984c) Absolute dependence of phenylalanine and tyrosine biosynthetic enzyme on tryptophan in Candida maltosa. Hoppe-Seyler’s Z Physiol Chem 365: 799–803PubMedGoogle Scholar
  61. Bode R, Melo C, Birnbaum D (1984d) Mode of action of glyphosate in Candida maltosa. Arch Microbiol 140: 83–85PubMedGoogle Scholar
  62. Bode R, Melo C, Birnbaum D (1985a) Regulation of tryptophan biosynthesis in the n-alkane-utilizing yeast Candida maltosa. Biochem Physiol Pflanz 180: 301–308Google Scholar
  63. Bode R, Kunze G, Birnbaum D (1985b) Reversal of glyphosate-induced growth inhibition of Candida maltosa by several amino acids and pyruvate. Biochem Physiol Pflanz 180: 613–619Google Scholar
  64. Bode R, Melo C, Birnbaum D 1985 Regulatory properties of 3-deoxy-D-arabinose-heptulosonate-7-phosphate synthase isoenzymes from Candida maltosa. J Basic Microbiol 25: 3–11PubMedGoogle Scholar
  65. Bode R, Melo C, Birnbaum D (1985d) Regulation of chorismate mutase, prephenate dehydrogenase and prephenate dehydratase of Candida maltosa. J Basic Microbiol 25: 291–298Google Scholar
  66. Bode R, Lippoldt A, Birnbaum D (1986a) Purification and properties of D-aromatic lactate dehydrogenase, an enzyme involved in the catabolism of aromatic amino acids of Candida maltosa. Biochem Physiol Pflanz 181: 189–198Google Scholar
  67. Bode R, Schult I, Birnbaum D (1986b) Purification and some properties of threonine dehydratase from Candida maltosa. J Basic Microbiol 26: 443–451Google Scholar
  68. Bode R, Schüssler K, Schmidt H, Hammer T, Birnbaum D (1990) Occurrence of the general control of amino acid biosynthesis in yeasts. J Basic Microbiol 30: 31–35PubMedGoogle Scholar
  69. Bode R, Samsonova IA, Birnbaum D (1991) Production of α- and β-sopropylmalate by a mutant from Candida maltosa. Zentralbl Mikrobiol 146: 35–39Google Scholar
  70. Bohlmann D, Bauch J, Kozlova LI, Meshankin GI, Roshkova MI, Triens K, Ringpfeil M, Sobek K (1979) Process for the production of “FermosinR” — fodder yeast from petroleum distillates. In: Dechema Monogr, vol 83, Microbiology applied to biotechnology. Verlag Chemie, Weinheim, pp 147–156Google Scholar
  71. Bohlmann D, Bauch J, Gentzsch H, Dzingel G, Katrusch R, Kozlowa L, Roshkova M, Meschankin G (1982) Biosynthese von Eiweißstoffen durch mikrobiologische Entparaffinierung und Qualität der erhaltenen Produkte. Abh Akad Wiss DDR Abt Math Naturwiss Tech 2: 323–329Google Scholar
  72. Bos P (1975) Some aspects of hydrocarbon assimilation by yeasts. Dissertation, Technical High School, DelftGoogle Scholar
  73. Bos P, de Boer WE (1968) Some aspects of the utilization of hydrocarbons by yeasts. Antonie Leeuwenhoek J Microbiol 34: 241–243Google Scholar
  74. Bos P, de Bruyn JC (1973) The significance of hydrocarbon assimilation in yeast identification. Antonie Leeuwenhoek J Microbiol 39: 99–107Google Scholar
  75. Böttcher F (1987) Genetics of imperfect yeasts. 12th Int Spec Symp Yeast, Genet of Non-conventional Yeasts, Weimar, 1987, Abstr, p 3Google Scholar
  76. Böttcher F, Samsonova IA (1978) Rhodosporidium BANNO: Dosiseffektbeziehungen, Mutageneffektivität und Mutantenspektrum bei der Induktion Auxotrophie-verursachender Mutationen durch ultraviolettes Licht und N-Methyl-N’-nitro-N-nitrosoguanidin. Z Allg Mikrobiol 18: 637–646PubMedGoogle Scholar
  77. Boulton CA, Ratledge C (1984) The physiology of hydrocarbon-utilizing microorganisms. In: Wiseman A (ed) Introduction to topics in enzyme and fermentation biotechnology, vol 9, Ellis Horwood, Chichester, pp 11–77Google Scholar
  78. Bovina EV, Deriabin W, Lange AV, Yarotsky SV (1986) Structure of mannan from the yeast Candida maltosa (Russ). Prikl Biokhim Mikrobiol 22: 679–683Google Scholar
  79. Bovina EV, Deriabin W, Gagloev VN, Serebriakov NG (1988) Study of the structure of mannans from Candida maltosa and Candida tropicalis using 13C-NMR spectroscopy (Russ). Prikl Biokhim Mikrobiol 24: 218–225PubMedGoogle Scholar
  80. Brada D, Schekman R (1988) Coincident localization of secretory and plasma membrane proteins in organelles of the yeast secretory pathway. J Bacteriol 170: 2775–2783PubMedGoogle Scholar
  81. Brendler W, Bauch J, Lübbert GA, Wünsche L, Hedlich R, Triems K, Shdannikowa EN (1983) Spezielle Aspekte der nichtsterilen Hefeproduktion auf der Basis von Kohlenwasserstoffen. Acta Biotechnol 3: 351–356Google Scholar
  82. Brown AJP, Bertram G, Feldmann PJF, Peggie MW, Swoboda RK (1991) Codon utilization in the pathogenic yeast, Candida albicans. Nucleic Acids Res 19: 4298PubMedGoogle Scholar
  83. Brückner B, Tröger R (1981a) Vergleichende physiologische Untersuchungen zwischen Candida sp. H und der Mutante H 13 unter Stickstoffmangelbedingungen. Z Allg Mikrobiol 21: 19–26PubMedGoogle Scholar
  84. Brückner B, Tröger R (1981b) Einfluß der Kohlenstoffquelle auf die Reservestoffbildung von Candida sp. H. Z Allg Mikrobiol 21: 77–84PubMedGoogle Scholar
  85. Bruns TD, Vilgalys R, Barns SM, Gonzalez D, Hibbett DS, Lane DJ, Simon L, Stickel S, Szaro TM, Weisburg WG (1992) Evolutionary relationship within the fungi: analyses of nuclear small subunit rRNA sequences. Mol Phylogenet Evol 1: 231–241PubMedGoogle Scholar
  86. Bühler M, Schindler J (1984) Aliphatic hydrocarbons. In: Rehm HJ, Reed G (eds) Biotechnology, vol 6a, Biotransformations (Kieslich K, vol ed), Verlag Chemie, Weinheim, pp 329–385Google Scholar
  87. Büttner R, Uebel B, Genz I-L, Köhler M (1985) Wachstumsuntersuchungen im substratlimitierten pH-Auxostaten I. Bistabiles Wachstumsverhalten unter kaliumlimitierten Bedingungen. J Basic Microbiol 25: 227–232Google Scholar
  88. Campbell I, Duffus JH (eds) (1988) Yeast, a practical approach. IRL Press, OxfordGoogle Scholar
  89. Carle GF, Olson MV (1984) Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acid Res 12: 5647–5664PubMedGoogle Scholar
  90. Casey J, Dobb R, Mycock G (1990) An effective technique for enrichment and isolation of Candida cloacae mutants defective in alkane catabolism. J Gen Microbiol 136: 1197–1202PubMedGoogle Scholar
  91. Casper P, Bode R, Birnbaum D (1985a) Regulation of ammonia assimilation in Candida maltosa (Germ). J Basic Microbiol 25: 95–101Google Scholar
  92. Casper P, Bode R, Samsonova IA, Birnbaum D (1985b) Glutamate/aspartate metabolism of Candida maltosa (Germ). J Basic Microbiol 25: 637–643Google Scholar
  93. Celma Calamita E, Arntz P, Bos P (1971) Obtaining protein concentrates using Candida maltosa cultivated in gaseous n-octane (Ital). An Inst Nac Invest Agrar Ser Gen N1: 165–177Google Scholar
  94. Cerniglia CE (1981) Aromatic hydrocarbons: metabolism by bacteria, fungi and algae. Rev Biochem Toxicol 3: 321–360Google Scholar
  95. Cerniglia CE, Crow SA (1981) Metabolism of aromatic hydrocarbons by yeast. Arch Microbiol 129: 9–13Google Scholar
  96. Chang MC, Jung HD, Suzuki T, Takagi M, Yano K (1984) Ploidy in the asporogenous yeast Candida maltosa, isolation of its auxotrophic mutants and their cell fusion. J Gen Appl Microbiol 30: 489–497Google Scholar
  97. Chu G, Vollrath D, Davis RW (1986) Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234: 1582–1585PubMedGoogle Scholar
  98. Claisse ML, Boze H, Dubreucq E, Segueilha L, Moulin G, Galzy P (1991) Characterization of alternative respiratory pathways in the yeast Schwanniomyces castellii by the study of mutants deficient in cytochromes a + a 3 and/or b. Acta Biochim Pol 38: 365–392PubMedGoogle Scholar
  99. Cook WL, Massey JK, Ahearn DG (1973) The degradation of crude oil by yeasts and its effect on Lesbistes reticulatus. In: Ahearn DG, Meyer SP (eds) The microbial degradation of oil pollutants. Louisiana State University, Center for Wetland Resources, Baton Rouge, pp 279–283Google Scholar
  100. Cooper TG (1982) In: Strathern JN, Jones EW, Broach JB (eds) The molecular biology of the yeast Saccharomyces: metabolism and gene expression, vol 2, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 39–99Google Scholar
  101. Crow SA, Bell SL, Ahearn DG (1979) Uptake of aromatic and branched chain hydrocarbons by yeasts. Bot Mar 22: 406Google Scholar
  102. Crow SA, Bell SL, Ahearn DG (1980) Uptake of aromatic and branched chain hydrocarbons by yeasts. Bot Mar 23: 117–120Google Scholar
  103. Oyer DR, Eccleshall R, Marmur J (1975) Isolation of yeast DNA. Methods Cell Biol 12: 39–44Google Scholar
  104. Dalin MV, Gukasian IA, Spivak SM, Fish NG, Kravtsov EG, Ermolaev AV (1991) Approaches to development of diagnostic allergens for observation of workers engaged in the production of microbial fodder biomass and population of development zones and regions of microbiological plants (Russ). Gig Tr Prof Zabol 5: 31–33PubMedGoogle Scholar
  105. Davidov ER, Gololobov AD (1980a) Regulation of metabolism in yeast during growth on n-alkanes. Proc jt. US/USSR Conf Mech Kinet Growth on Various Substr, Contr Simul Optim Microbiol Proc, Proj I-II. PB81.219131, pp 46–65. Natl Sci Found Res Appl Natl Needs, [Rep] NSF/RA (US) 1980, NSF/RA-800527Google Scholar
  106. Davidov ER, Gololobov AD (1980b) Effect of pO2 on the regulation of metabolism in yeasts during cultivation on n-alkanes. Proc jt. US/USSR Conf Mech Kinet Growth on Various Substr, Contr Simul Optim Microbiol Proc, Proj I-II. PB81.219131, pp 94–103. Natl Sci Found Res Appl Nati Needs, [Rep] NSF/RA (US) 1980, NSF/RA-800527Google Scholar
  107. Davidov ER, Demanova NF, Sokolov YI, Gololobov AD (1980) Oxidation of individual isoalkanes and alkylaromatic hydrocarbons by yeasts of the genus Candida (Russ). Prikl Biokhim Mikrobiol 16: 775–781Google Scholar
  108. Davidov ER, Sokolov YI, Demanova NF, Gololobov AD (1981a) Utilization of 2-methyl hexadecane by the yeast Candida guilliermondii (Russ). Prikl Biokhim Mikrobiol 17: 328–341Google Scholar
  109. Davidov ER, Sokolov YI, Demanova NF, Gololobov AD (1981b) Utilization of 3-methyl hexadecane by the yeast Candida guilliermondii (Russ) Prikl Biokhim Mikrobiol 17: 523–532Google Scholar
  110. Davidov ER, Demanova NF, Sokolov YI, Gololobov AD (1982) Kinetics of hydrocarbon assimilation by yeast of the genus Candida (Russ). Acta Biotechnol 2: 213–225Google Scholar
  111. Davidova EG, Rachinskii VV (1979) Uptake of n-alkanes by yeast cells (Review, in Russian). Uspechi Sovremennoi Biologii 88: 198–209Google Scholar
  112. Davidova EG, Rachinskii VV (1981) Transport of liquid n-alkanes into the yeast cell determined by gas-liquid radiogaschromatography (Russ). Mikrobiologiya 50: 349–352Google Scholar
  113. Davidova EG, Demanova NF, Gololobov AD, Rachinskii VV (1975) Isolation and characterization of the cell structures of Candida tropicalis (Russ). Mikrobiologiya 44: 621–624Google Scholar
  114. Davidova EG, Belov AP, Rachinskii W (1977a) Study of the role of lipid granules of a yeast cell in the assimilation of n-alkanes (Russ). Dokl Akad Nauk SSSR 235: 1189–1192PubMedGoogle Scholar
  115. Davidova EG, Belov AP, Rachinskii W (1977b) Isolation and characteristics of lipid granules from Candida tropicalis (Russ). Mikrobiologiya 46: 1044–1049Google Scholar
  116. Davidova EG, Belov AP, Rachinskii W (1979) Electrophoretic characteristics of the protein from yeast lipid granules (Russ). Mikrobiologiya 48: 803–808Google Scholar
  117. Davidova EG, Zinchenko GA, Belov AP (1989) Substrate specificity of acyltransferases from lipid granules of mesophilic yeasts (Russ). Biokhimiya 54: 587–592Google Scholar
  118. Davis R, Thomas M, Cameron J, John TS, Scherer. S, Padgeff R (1980) Rapid DNA isolation for enzymatic and hybridization analysis. Methods Enzymol 65: 404–411PubMedGoogle Scholar
  119. Delpozo L, Abarca D, Hoenicka J, Jimenez A (1993) Two different genes from Schwanniomyces occidentalis determine ribosomal resistance to cycloheximide. Eur J Biochem 213: 849–857Google Scholar
  120. Demanova NF, Davidov ER, Gololobov AD (1980a) Oxidation of n-alkanes with different carbon chain lengths (in the range of C11-C25) by the Candida yeast (Russ). Prikl Biokhim Mikrobiol 16: 5–12Google Scholar
  121. Demanova NF, Davidov ER, Gololobov AD (1980b) Oxidation of n-alkanes with different carbon chain lengths by Candida yeast (Russ). Prikl Biokhim Mikrobiol 16: 149–155PubMedGoogle Scholar
  122. Demanova NF, Davidov ER, Gololobov AD (1980c) Yeast growth on mixture of n-docosane and n-octadecane during continuous cultivation (Russ). Prikl Biokhim Mikrobiol 16: 883–889Google Scholar
  123. Deshler JO, Larson GP, Rossi JJ (1989) Kluyveromyces lactis maintains Saccharomyces cerevisiae intron-encoded splicing signals. Mol Cell Biol 9: 2208–2213PubMedGoogle Scholar
  124. Dmitriev VV, Tsiomenko AB, Kulaev IS, Fikhte BA (1980) A cytochemical study of the “canal” formation in the yeast cell wall. Eur J Appl Microbiol Biotechnol 9: 211–216Google Scholar
  125. Dole VP, Meinertz H (1960) Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem 235: 2595–2599PubMedGoogle Scholar
  126. Dolgikh MS, Kravtsov EG, Ermolaev AV (1990) Proteolytic activity of protein-producing yeast-like Candida fungi. Mikol Fitopatol 24: 229–235Google Scholar
  127. Durasova EN, Mikhailova NP, Vyunov KA, Bakulev VM, Sokolov VN, Makhrosenkova MO, Khromov-Borisov NN (1986) The resistance of Candida guilliermondii to polyene antibiotics (Russ). Mikrobiologiya 55: 607–611Google Scholar
  128. Durasova EN, Mikhailova NP, Sorokoletova EF, Vyunov KA (1989) The use of various mutagens for the induction of nystatin-resistant mutants in Candida maltosa (Russ). Mikrobiologiya 58: 760–763, Microbiology (NY) 58: 610–614 (English Translation)Google Scholar
  129. Durasova EN, Mikhailova NP, Zhakovskaya ZA, Vyunov KA (1991) Sterol content of Candida maltosa strains with high resistance to nystatin (Russ). Mikol Fitopatol 25: 487–492Google Scholar
  130. Eckart V, Cech D, Kammel K, Bauch J (1988) Die Gewinnung von Labor-, Fein- und Biochemikalien im VEB Petrolchemisches Kombinat Schwedt. Teil III: Ribonucleinsäure und RNA-Bausteine. Chem Techn 40: 432–434Google Scholar
  131. Egorenkova GN, Belov AP (1984) Structural organization of the cell walls in yeasts of the genus Candida (Russ). Mikrobiologiya 53: 300–304, (English Translation)Google Scholar
  132. Egorenkova GN, Belov AP (1984) Structural organization of the cell walls in yeasts of the genus Candida (Russ) Microbiology (NY) 53: 241–245PubMedGoogle Scholar
  133. Einsele A (1983) Biomass from higher n-alkanes. In: Rehm H-J, Reed G (eds) Biotechnology, vol 3. Verlag Chemie, Weinheim, pp 43–81Google Scholar
  134. Erickson AH, Blobel G (1983) Cell-free translation of messenger RNA in a wheat germ system. Meth Enzymol 96: 38–50PubMedGoogle Scholar
  135. Ermolaev AV, Gukasyan IA, Ogarkov VI (1987) Isolation of surface antigens of Candida maltosa responsible for Candida sensitization and their immunochemical characteristics (Russ). Vopr Med Khim 33: 42–46PubMedGoogle Scholar
  136. Ermolaev AV, Gukasyan IA, Parfenova EV, Spivak SM, Kravtsov EG (1991) Obtaining the allergens from yeast-like fungi of the genus Candida, producers of fodder protein, for hygienic standardization of the strains. Gig Tr Prof Zabol 8: 19–20PubMedGoogle Scholar
  137. Faggi E, Mennini S (1985) Comparative studies of the pathogenicity of Candida albicans, Candida utilis and Candida maltosa in laboratory animals. Ann Microbiol Enzimol 35: 111–122Google Scholar
  138. Feinberg B, McLaughlin CS (1988) Isolation of yeast mRNA and in vitro translation in a yeast cell-free system. In: Campbell I, Duffus JH (eds) Yeast, a practical approach, IRL Press, Oxford, pp 147–162Google Scholar
  139. Fiechter A, Gmünder FK (1989) Metabolic control of glucose degradation in yeast and tumor cells. In: Fiechter A (ed) Advances in biochemical engineering/biotechnology, vol 39, Springer-Verlag Berlin Heidelberg, pp 2–28Google Scholar
  140. Fiechter A, Käppeli O, Meussdoerffer F (1987) Batch and continuous culture. In: Rose AH, Harrison JS (eds) The Yeasts, vol 2, 2nd edn, Yeasts and the environment. Academic Press, London, pp 99–129Google Scholar
  141. Fischer W, Reuter G (1982) Mannan-Lokalisation durch Concanavalin A im Zusammenhang mit elektronenmikroskopischen und chemisch-analytischen Untersuchungen an unterschiedlich präparierten Zellwänden der Futtereiweißhefe Candida sp. H. Z Allg Mikrobiol 22: 29–40PubMedGoogle Scholar
  142. Fischer W, Brückner B, Meyer HW (1982) Ultrastructural alterations at the cell wall and the plasma membrane of Candida sp. H induced by n-alkane. Z Allg Mikrobiol 22: 227–236PubMedGoogle Scholar
  143. Fröhlich K-U, Entian K-D, Mecke D (1985) The primary structure of the yeast hexokinase PII (HXK2) which is responsible for glucose repression. Gene 36: 105–111PubMedGoogle Scholar
  144. Fukazawa Y, Nakase T, Shinoda T, Nishikawa A, Kagaya K, Tsuchiya T (1975) Significance of cell wall structures on yeast classification: proton magnetic resonance and serological and deoxyribonucleic acid characterization of Candida sake and related species. Int J Syst Bacteriol 25: 304–314Google Scholar
  145. Fukui S, Tanaka A (1981a) Metabolism of alkanes by yeasts. Adv Biochem Eng 19: 217–237Google Scholar
  146. Fukui S, Tanaka A (1981b) Production of useful compounds from alkane media in Japan. In: Fiechter A (ed) Products from alkanes, celluloses and other feedstocks. Akademie Verlag, Berlin, pp 1–36 (Fukui S, Tanaka A (1980) Adv Biochem Eng 17: 1–35)Google Scholar
  147. Gargani G (1979) Models of pathogenicity for yeasts of the genus Candida. In: Garattini S, Paglialunga S, Scrimshaw NS (eds) Single cell protein: safety for animals and human feeding, Pergamon Press, Oxford, (1980) pp 30–38Google Scholar
  148. Gargani G, Campisi E, Faggi E (1978) The problem of Candida virulence (Ital). Riv Ital Ig 38: 266–285Google Scholar
  149. Gargani G, Campisi E, Faggi E (1979) Cross reactions between several species of the genus Candida demonstrated by intradermal inoculation of the guinea pig. Bull Soc Fr Mycol Med 8: 17–20Google Scholar
  150. Glombitza F (1982) Der Einfluß der Flockenbildung auf die Versorgung der Hefezellen mit Sauerstoff bei der Fermentation flüssiger Kohlenwasserstoffe. Acta Biotechnol 2: 43–50Google Scholar
  151. Glombitza F, Heinritz B (1979) Thermodynamik mikrobieller Prozesse. Z Allg Mikrobiol 19: 171–179PubMedGoogle Scholar
  152. Goeddel D (ed) (1990) Methods enzymology vol 185, Gene expression technology, Section IV. Expression in yeast, Academic Press, London, pp 230–482Google Scholar
  153. Golubev VI, Naumov GI, Bibikova II, Blagodatskaya VM, Voustin MM, Nikitina TN, Buzurg-Zade DL, Gradova NB (1986) A novel species assignment of the hydrocarbon digesting strains of the Candida genus yeast (Russ). Biotekhnologiya 0(5): 17–21Google Scholar
  154. Gomi K, Horiguchi S (1988) Purification and characterization of pyrocatechase from the catechol assimilating yeast Candida maltosa. Agric Biol Chem 52: 585–587Google Scholar
  155. Gradova NB, Kovalsky YV (1978) Production of fodder yeast cultures on media containing hydrocarbons (Russ). Mikrobiologiya 47: 259–264Google Scholar
  156. Gradova NB, Osipova VG, Davidova EG, Chunaev AS, Kvitko KV (1976) Populational and phenogenetic analysis of variability of Candida yeast for the character of protein content in biomass (Russ). Genetics (USSR) 12: 80–88Google Scholar
  157. Gradova NB, Dikanskaya EM, Robysheva ZN, Rodionova GS, Butteyeva MB, Zaikina AI (1983) Characterization of hydrocarbon oxidizing yeasts. Peculiarities of their growth and biosynthetical processes (Russ). Acta Biotechnol 3: 241–249Google Scholar
  158. Gradova NB, Belov AP, Guselnikova TV (1990) Some aspects of the regulation of nitrogen metabolism in the yeast genus Candida. Study of the kinetics of ammonium transport to the cells of hydrocarbon-oxidizing yeast of the genus Candida with a change in nitrogen nutrition. Acta Biotechnol 10: 169–177Google Scholar
  159. Gradova NB, Zaitsev SA, Gadzhieva VI (1991) Ecological monitoring of hydrocarbon-oxidizing Candida yeasts as a technogenic factor (Russ). Biotekhnologiya (Moscow) 0(2): 57–60Google Scholar
  160. Griffiths G, Hoppeler H (1986) Quantitation in immunocytochemistry: correlation of immunogold labeling to absolute number of membrane antigens. J Histochem Cytochem 34: 1389–1398PubMedGoogle Scholar
  161. Griffiths G, Brands R, Burke B, Louvard D, Warren G (1982) Viral membrane proteins acquire galactose in trans Golgi cisternae during intracellular transport. J Cell Biol 95: 781–792PubMedGoogle Scholar
  162. Griffiths G, McDowall A, Back R, Dubochet J (1984) On the preparation of cryosections for immunocytochemistry. J Ultrastruct Res 89: 65–78PubMedGoogle Scholar
  163. Grimmecke HD, Reuter G (1980) Struktur der Zellwandpolysaccharide in der Futtereiweiß-Hefe Candida sp. H. 5. Die komplexe Struktur des Proteophosphomannans. Biochem Physiol Pflanz 175: 781–788Google Scholar
  164. Grimmecke HD, Reuter G (1981a) Struktur der Zellwandpolysaccharide in der Futtereiweiß-Hefe Candida sp. H. 1. Struktur des alkalistabilen Mannan-Proteins. Z Allg Mikrobiol 21: 95–107PubMedGoogle Scholar
  165. Grimmecke HD, Reuter G (1981b) Struktur der Zellwandpolysaccharide in der Futtereiweiß-Hefe Candida sp. H. 2. Charakterisierung der Bindung des Phosphats am Mannan-Protein-Phosphat-Komplex und Identifizierung der als Phosphodiester gebundenen Mono- und Oligosaccharide. Z Allg Mikrobiol 21: 109–116PubMedGoogle Scholar
  166. Grimmecke HD, Reuter G (1981c) Struktur der Zellwandpolysaccharide in der Futtereiweiß-Hefe Candida sp. H. 4. Struktur der alkalilabilen Oligosaccharide im Man-nan-Protein-Phosphat-Komplex. Z Allg Mikrobiol 21: 211–218PubMedGoogle Scholar
  167. Grimmecke HD, Reuter G (1981d) Struktur der Zellwandpolysaccharide in der Futtereiweiß-Hefe Candida sp. H. 6. Isolierung und Strukturaufklärung der Glucane. Z Allg Mikrobiol 21: 643–650PubMedGoogle Scholar
  168. Grimmecke HD, Meyer H, Scheller D, Reuter G (1981) Struktur der Zellwandpolysaccharide in der Futtereiweiß-Hefe Candida sp. H. 3. Charakterisierung unterschiedlicher Phosphatbindungen im Mannan-Protein-Phosphat-Komplex. Z Allg Mikrobiol 21: 201–210PubMedGoogle Scholar
  169. Gukasyan IA, Ermolaev AV, Kravtsov EG, Kacharmina VA (1990) The level of antigenic relationship of surface conjugates of the hydrocarbon-assimilating strains of yeast-like Candida fungi used in fodder protein production. Mikol Fitopatol 24: 420–424Google Scholar
  170. Guselnikova TV, Pavlov AA, Bezrukov MG, Gradova NB (1988) Effect of thermal treatment on the fraction composition of yeast proteins (Russ). Biotekhnologiya 4: 509–511Google Scholar
  171. Guselnikova TV, Belov AP, Gradova NB (1989) The effect of yeast autolysates on the level and distribution of free amino acids in yeast cells of the genus Candida (Russ). Mikrobiologiya 58: 202–205Google Scholar
  172. Guselnikova TV, Gromov YA, Belov AP (1991) Influence of trophic cultivation conditions on the kinetics of methylamine transport in the yeast Candida maltosa (Russ). Mikrobiologiya 60: 232–237Google Scholar
  173. Guthrie C, Fink GR (eds) (1991) Methods Enzymology, vol 194, Guide to yeast genetics and molecular biology. Academic Press, New YorkGoogle Scholar
  174. Hagihara R, Mishina M, Tanaka A, Fukui S (1977) Utilization of pristane by a yeast Candida lipolytica. Fatty acid composition of pristane-grown cells. Agr Biol Chem 41: 1745–1748Google Scholar
  175. Hammer T, Bode R, Schmidt H, Birnbaum D (1991) Distribution of three lysine-cataboliz-ing enzymes in various yeast species. J Basic Microbiol 31: 43–49Google Scholar
  176. Hann BC, Walter P (1991) The signal recognition particle in S. cerevisiae. Cell 67: 131–144PubMedGoogle Scholar
  177. Hasegawa Y, Okamoto T, Obata H, Tokuyama T (1990) Utilization of aromatic compounds by Trichosporon cutaneum KUY-6A. J Ferment Bioeng 69: 122–124Google Scholar
  178. Heinritz B, Bley T (1979) Einfluß alternierender Störungen auf die Verbrauchskennziffern beim Wachstum von Mikroorganismen. Z Allg Mikrobiol 19: 247–252PubMedGoogle Scholar
  179. Heinritz B, Stichel E, Bley T, Rogge G, Glombitza F (1981) Yield coefficients in dependence on milieu conditions and cell states. II. Influence of perturbations on continuous cultivation of the yeast Lodderomyces elongisporus on hydrocarbons. Z Allg Mikrobiol 21: 581–586PubMedGoogle Scholar
  180. Heinritz B, Stichel E, Rogge G, Bley T, Glombitza F (1982) Theoretische Bestimmung energetischer Wirkungsgrade der mikrobiellen Kohlenstoffsubstratwandlung und Vergleich mit experimentellen Werten an Phasenkulturen. Z Allg Mikrobiol 22: 534–544Google Scholar
  181. Heinritz B, Stoll P, Glombitza F (1983a) Heat flow measurements in aerobic microbial growth processes with a nonisothermal calorimeter operating directly in the fermenter. Acta Biotechnol 3: 83–87Google Scholar
  182. Heinritz B, Rogge G, Stichel E, Bley T (1983b) Use of biorhythmic processes for increasing the efficiency of carbon-compound conversion by microorganisms. Acta Biotechnol 3: 125–131Google Scholar
  183. Heinritz B, Bley T, Ringpfeil M (1985) Einsatz von Hochleistungsreaktoren zur mikrobiologischen Stoffwandlung. Chem Technol 37: 514–516Google Scholar
  184. Heinz T, Henning U, Wünsche J, Henk G (1989) The prececal and total intestinal nutrient digestibility and amino acid absorption of food yeasts in swine (Germ). Arch Tierernaehr 39: 1007–1019Google Scholar
  185. Hendriks L, Goris A, Van de Peer Y, Neefs JM, Vancanneyt M (1991) Phylogenetic analysis of five medically important Candida species as deduced on the basis of small ribosomal subunit RNA sequences. J Gen Microbiol 137: 1223–1230PubMedGoogle Scholar
  186. Hepler PK (1981) The structure of endoplasmic reticulum revealed by osmium tetroxide-potassium ferricyanide staining. Eur J Cell Biol 26: 102–110PubMedGoogle Scholar
  187. Hikiji T, Ohkuma M, Takagi M, Yano K (1989) An improved host-vector system for Candida maltosa using a gene isolated from its genome that complements the his5 mutation of Saccharomyces cerevisiae. Curr Genet 16: 261–266PubMedGoogle Scholar
  188. Hill DE, Boulay R, Rogers D (1988) Complete nucleotide sequence of the peroxisomal acyl CoA oxidase from the alkane-utilizing yeast Candida maltosa. Nucleic Acids Res 16: 365–366PubMedGoogle Scholar
  189. Hino A, Wongkhalaung C, Kawai S, Murao S, Yano K, Takano H, Takagi M (1992) Construction of a transformation system for a freeze-tolerant yeast Kluyveromyces thermotolerans. Agric Biol Chem 56: 228–232Google Scholar
  190. Hirata T, Ishitani T (1978) Studies on the discrimination of SCP-related yeast by proton magnetic resonance spectroscopy: structural changes in cell wall mannan of Candida subtropicalis grown in different media. Agric Biol Chem 42: 775–780Google Scholar
  191. Hofmann KH (1986a) Microbial transformation of polycyclic aromatic hydrocarbons (Germ). Wiss Z EMA Univ Greifswald, Math Nat Reihe 35: 23–26Google Scholar
  192. Hofmann KH (1986b) Oxidation of naphthalene by Saccharomyces cerevisiae and Candida utilis. J Basic Microbiol 26: 109–111PubMedGoogle Scholar
  193. Hofmann KH, Krüger AK (1985) Induction and inactivation of phenol hydroxylase and catechol oxygenase in Candida maltosa L4 in dependence on the carbon source. J Basic Microbiol 25: 373–379Google Scholar
  194. Hofmann KH, Polnisch E (1990a) Activities of gluconeogenic enzymes in the yeast Candida maltosa during growth on glucose or ethanol (Germ). J Basic Microbiol 30: 333–336PubMedGoogle Scholar
  195. Hofmann KH, Polnisch E (1990b) Cyclic AMP-dependent phosphorylation of fructose-1,6-bisphosphate and other proteins in the yeast Candida maltosa. J Basic Microbiol 30:555–559PubMedGoogle Scholar
  196. Hofmann KH, Polnisch E (1990c) Characterization of a mutant of the yeast Candida maltosa defective in catabolite inactivation of gluconeogenic enzymes. Arch Microbiol 154: 514–517Google Scholar
  197. Hofmann KH, Schauer F (1988) Utilization of phenol by hydrocarbon assimilating yeasts. Antonie Leeuwenhoek J Microbiol 54: 179–188Google Scholar
  198. Hofmann KH, Vogt U (1987) Induction of phenol assimilation in chemostat cultures of Candida maltosa L4. J Basic Microbiol 27: 441–447Google Scholar
  199. Hofmann KH, Vogt U (1988) Degradation of phenol by yeasts in the presence of n-hexadecane under growth conditions in a stirred reactor (Germ). Zentralbl Mikrobiol 143: 87–91Google Scholar
  200. Holley RW (1967) Isolation of sRNA from intact yeast cells. Methods Enzymol 12: 596–598Google Scholar
  201. Holzschu DL, Chandler FW, Ajello L, Ahearn DG (1979) Evaluation of industrial yeasts for pathogenicity. Sabouraudia 17: 71–78PubMedGoogle Scholar
  202. Honeck H, Schunck W-H, Riege P, Müller H-G (1982) The cytochrome P-450 alkane monooxygenase system of the yeast Lodderomyces elongisporus: purification and some properties of the NADPH-cytochrome P-450 reductase. Biochem Biophys Res Commun 106: 1318–1324PubMedGoogle Scholar
  203. Honeck H, Schunck W-H, Müller H-G (1985) The function of cytochrome P-450 in fungi and prospects of application. Pharmazie 40: 221–227PubMedGoogle Scholar
  204. Huth J (1987) Über die Verwertung von n-Alkanen durch Candida maltosa EH15D unter besonderer Berücksichtigung der festen n-Alkane mit 20 und mehr C-Atomen. Dissertation, Akademie der Wissenschaften der DDR, BerlinGoogle Scholar
  205. Huth J, Blasig R, Werner S, Müller H-G (1990a) The proton extrusion of growing yeast cultures as an on-line parameter in fermentation processes: determination of biomass production and substrate consumption in batch experiments with Candida maltosa EH15 D. J Basic Microbiol 30: 481–488Google Scholar
  206. Huth J, Werner S, Müller H-G (1990b) The proton extrusion of growing yeast cultures as an on-line parameter in fermentation processes: quantitative determination of growth from milligram amounts of substrate in a minimized fed-batch fermentation apparatus. J Basic Microbiol 30: 489–497Google Scholar
  207. Huth J, Werner S, Müller H-G (1990c) The proton extrusion of growing yeast cultures as an on-line parameter in fermentation processes: ammonia assimilation and proton extrusion are correlated by an 1:1 stoichiometry in nitrogen-limited fed-batch fermentations. J Basic Microbiol 30: 561–567Google Scholar
  208. Hwang CW, Yano K, Takagi M (1991) Sequences of two tandem genes regulated by carbon sources, one being essential for n-alkane assimilation in Candida maltosa. Gene 106: 61–69PubMedGoogle Scholar
  209. Ilchenko AP, Tsfasman IM (1987) Isolation and characterization of aldehyde dehydrogenase from Torulopsis candida yeast grown on hexadecane (Russ). Biokhimiya 52: 58–65Google Scholar
  210. Ilchenko AP, Tsfasman IM (1988) Isolation and characterization of alcohol oxidase for higher alcohols of the yeast Torulopsis candida grown on hexadecane (Russ). Biokhimiya 53: 263–271Google Scholar
  211. Ilchenko AP, Mauersberger S, Matyashova RN, Losinov AB (1980) Induction of cytochrome P-450 in the course of yeast growth on different substrates (Russ). Mikrobiologiya 49: 452–458Google Scholar
  212. Ilchenko AP, Shilova NK, Matyashova RN, Galynkin VA (1989) Effect exerted by the concentration of oxygen dissolved in the medium on the biosynthesis of cytochromes by Candida maltosa cells in the course of their growth on paraffins (Russ). Mikrobiologiya 58: 716–722Google Scholar
  213. Ilchenko AP, Vasilkova NN, Matyashova RN (1991) Changes in the activity of enzymes utilizing H2O2 under different conditions of yeast cultivation (Russ). Mikrobiologiya 60: 55–64Google Scholar
  214. Ilchenko AP, Morgunov IG, Honeck H, Mauersberger S, Vasilkova NN, Müller H-G (1994) Purification and some properties of alcohol oxidase from the yeast Yarrowia lipolytica H222 (Russ). Biokhimiya (Moscow) 59: 1312–1319Google Scholar
  215. Ilyina VI, Dalin MV, Gukasyan IA, Tikhomirov YG, Mokeeva NV (1988) Testing the usefulness of an erythrocyte immunoglobulin diagnostic agent for assessing the levels of the protein paprin in the air (Russ). Gig Sanit 3: 38–40Google Scholar
  216. Ioffe ML, Maksimova GN, Tsygankova NV, Zhutchkov VN (1990) Investigation on biological action of denucleinized product obtained from paprin. Biotekhnologiya (Soviet Biotechnology) 0(6): 70–72Google Scholar
  217. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153: 163–168PubMedGoogle Scholar
  218. Jomantiene R, Januska A, Sasnauskas K, Janulaitis A (1987) Cloning of ADE1, ADE2, ARG4 genes and ARS sequence of the yeast Candida maltosa. 12th Int Spec Symp Genet of Non-conventional Yeasts, Weimar, GDR, 1987, Abstr, p 41Google Scholar
  219. Jomantiene R, Geneviciute E, Januska A, Lebedys J, Sasnauskas K (1991) ADE1 gene of the yeast Candida maltosa. Eksp Biol 0(3): 19–29 (published 1992)Google Scholar
  220. Jomantiene R, Lebediene E, Proscevicius J, Meskauskiene R, Sasnauskas K (1992) Molecular analysis of the Candida maltosa gene, conferring resistance to cycloheximide in Saccha-romyces cerevisiae. Int Spec Symp Genet Mol Biol Non-conventional Yeasts, Leuenberg near Basel, Switzerland 1992, AbstrGoogle Scholar
  221. Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces, vol 1 — Genome dynamics, protein synthesis, and energetics (1991), vol 2 — Gene expression (1992), vol 3 — Cell cycle and cell biology (1993), Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  222. Kalin M, Neujahr HY, Weissmahr RN, Sejlitz T, Johl R, Fiechter A, Reiser J (1992) Phenol hydroxylase from Trichosporon cutaneum: gene cloning, sequence analysis, and functional expression in Escherichia coli. J Bacteriol 174: 7112–7120PubMedGoogle Scholar
  223. Kamiryo T, Sakasegawa Y, Tan H (1989) Expression and transport of Candida tropicalis peroxisomal acyl-coenzyme A oxidase in the yeast Candida maltosa. Agric Biol Chem 53: 179–186Google Scholar
  224. Kamiryo T, Mito N, Nike T, Suzuki T (1991) Assignment of most genes encoding major peroxisomal polypeptides to chromosomal band V of the asporogenic yeast Candida tropicalis. Yeast 7: 503–511PubMedGoogle Scholar
  225. Kaneko T, Ishii K, Kawaharada H, Kagotani K, Shimada Y, Watanabe K (1977) Taxonomic studies on a hydrocarbon-assimilating Candida strain. Agric Biol Chem 41: 2269–2276Google Scholar
  226. Käppeli O, Fiechter A (1976) The mode of interaction between the substrate and cell surface of hydrocarbon-utilizing yeast Candida tropicalis. Biotechnol Bioeng 18: 967–974Google Scholar
  227. Käppeli O, Fiechter A (1977) Component from the cell surface of the hydrocarbon-utilizing yeast Candida tropicalis with possible relation to hydrocarbon transport. J Bacteriol 131: 917–921PubMedGoogle Scholar
  228. Käppeli O, Aeschbach H, Schneider AH, Fiechter A (1975) A comparative study of carbon energy reserve metabolism of Candida tropicalis growing on glucose and on hydrocarbons. Eur J Appl Microbiol 1: 199–211Google Scholar
  229. Käppeli O, Müller M, Fiechter A (1978) Chemical and structural alterations at the cell surface of Candida tropicalis, induced by hydrocarbon substrate. J Bacteriol 133: 952–958PubMedGoogle Scholar
  230. Käppeli O, Walther P, Müller M, Fiechter A (1984) Structure of the cell surface of the yeast Candida tropicalis and its relation to hydrocarbon transport. Arch Microbiol 138: 279–282PubMedGoogle Scholar
  231. Kärgel E, Schmidt HE, Schunck W-H, Riege P, Mauersberger S, Müller H-G (1984) A solid-phase radioimmunoassay for yeast cytochrome P-450. Anal Lett 17 B18: 2011–2024Google Scholar
  232. Kärgel E, Schunck W-H, Riege P, Honeck E, Claus R, Kleber H-P, Müller H-G (1985) A comparative immunological investigation of the alkane-hydroxylating cytochrome P-450 from the yeast Candida maltosa. Biochem Biophys Res Commun 128: 1261–1267PubMedGoogle Scholar
  233. Kärgel E, Aoyama Y, Schunck W-H, Müller H-G, Yoshida Y (1990) Comparative study on cytochrome P-450 of yeasts using specific antibodies to cytochromes P-450alk and P-45014DM. Yeast 6: 61–67Google Scholar
  234. Kärgel E, Menzel R, Honeck H, Vogel F, Böhmer A, Schunck W-H (1996) Candida maltosa NADPH-cytochrome P450 reductase: Cloning of a full-length cDNA, heterologous expression in Saccharomyces cerevisiae and function of the N-terminal region for membrane anchoring and proliferation of the endoplasmic reticulum. Yeast 12 (in press)Google Scholar
  235. Karpova TS, Zhuravleva TS, Pashina OB, Nikolaishvili NT, Larionov VL (1987) Chromosome stability in Saccharomyces yeasts (Russ). Genetika 23: 2148–2156PubMedGoogle Scholar
  236. Kasanzev EN, Maximova GN, Shekina EV, Vorobyeva GI (1975) Determination of the relative volumes of lipid inclusions of the yeast Candida guilliermondii NP4 grown on hydrocarbons (Russ). Appl Biokhim Mikrobiol 11: 640–648Google Scholar
  237. Kasüske A, Wedler H, Schulze S, Becher D (1992) Efficient electropulse transformation of intact Candida maltosa cells by different homologous vector plasmids. Yeast 8: 691–697PubMedGoogle Scholar
  238. Kawaguchi Y, Honda H, Taniguchi-Morimura H, Iwasaki S (1989) The codon CUG is read as serine in an asporogenic yeast Candida cylindracea. Nature 341: 164–166PubMedGoogle Scholar
  239. Kawai S, Hwang CW, Sugimoto M, Takagi M, Yano K (1987) Subcloning and nucleotide sequencing of an ARS site of Candida maltosa which also functions in Saccharomyces cerevisiae. Agric Biol Chem 51: 1587–1591Google Scholar
  240. Kawai S, Hikiji T, Murao S, Takagi M, Yano K (1991) Isolation and sequencing of a gene, C-ADE1, and its use for a host-vector system in Candida maltosa with two genetic markers. Agric Biol Chem 55: 59–66PubMedGoogle Scholar
  241. Kawai S, Murao S, Mochizuki M, Shibuya I, Yano K, Takagi M (1992) Drastic alteration of cycloheximide sensitivity by substitution of one amino acid in the L41 ribosomal protein of yeasts. J Bacteriol 174: 254–262PubMedGoogle Scholar
  242. Kawamura M, Takagi M, Yano K (1983) Cloning of a LEU gene and an ARS site of Candida maltosa. Gene 24: 157–162PubMedGoogle Scholar
  243. Keszenman-Pereyra D, Hieda K (1988) A colony procedure for transformation oí Saccharomyces cerevisiae. Curr Genet 13: 21–23PubMedGoogle Scholar
  244. Kirsch DR, Kelly R, Kurtz MB (eds) (1990) The genetics of Candida. CRC Press, Boca RatonGoogle Scholar
  245. Kitamura H, Anri A, Fuse K, Seo M, Itakura C (1990) Chronic mastitis caused by Candida maltosa in a cow. Vet Pathol 27: 465–466PubMedGoogle Scholar
  246. Klinner U, Böttcher F (1985) Chromosomal rearrangements after protoplast fusion in the yeast Candida maltosa. Curr Genet 9: 619–621Google Scholar
  247. Klinner U, Böttcher F (1987) Protoplast fusion as tool for genetic analysis and manipulation. 12th Int Spec Symp Genet of Non-conventional Yeasts, Weimar, 1987, Abstr, p 4Google Scholar
  248. Klinner U, Samsonova IA, Böttcher F (1984) Genetic analysis of the yeast Candida maltosa by means of induced parasexual processes. Curr Microbiol 11: 241–246Google Scholar
  249. Kölblin R, Birkenbeil S (1981) Zusammenhang zwischen Koloniemorphologie und Polysaccharidgehalt in zellwandmodifizierten Mutanten von Candida sp. “H”. Z Allg Mikrobiol 21: 519–530PubMedGoogle Scholar
  250. Kölblin R, Tröger R (1982) Zusammenhang zwischen Protein- und Polysaccharidgehalt in zellwandmodifizierten Mutanten von Candida sp. H. Z Allg Mikrobiol 22: 63–68PubMedGoogle Scholar
  251. Komagata K (1979) Characteristics of Candida maltosa. In: Garattini S, Paglialunga S, Scrimshaw NS (eds) Single-cell protein: safely for animal and human feeding. Proc protein-calorie advisory group of the United Nations System Symp, Milan, Italy, March 31-April 1, 1977. Pergamon Press, Oxford, pp 39–43Google Scholar
  252. Komagata K, Nakase T, Katsuya N (1964a) Assimilation of hydrocarbons by yeast. I. Pre-liminary screening. J Gen Appl Microbiol 10: 313–321Google Scholar
  253. Komagata K, Nakase T, Katsuya N (1964b) Assimilation of hydrocarbons by yeast. II. Determination of hydrocarbon-assimilating yeast. J Gen Appl Microbiol 10: 323–333Google Scholar
  254. König WA (1987) The practice of enantiomer separation by capillary gas chromatography. Hüthig-Verlag, Heidelberg, p 42Google Scholar
  255. Rostov V, Ratchev R, Lazarova G, Russeva L, Krasteva J, Ivanova V, Vassileva M, Sokolov T, Jelev S (1991) Yeast assimilation of sugars from hemicellulose beech wood hydrolysates. Acta Microbiol Bulg 28: 51–61Google Scholar
  256. Kovalenko OG, Korobko OP, Korbelainen ES, Barkalova AO, Telegeeva TA, Papp VT (1992) Effect of mannan from Candida maltosa and its sulphated derivatives on plant susceptibility to viral and bacterial infections (Russ). Mikrobiol Zh (Kiev) 54: 63–69Google Scholar
  257. Kozlova LI, Meshchankin GI (1991) Production technology of fodder yeasts on oil distillates. Biotekhnologiya 0(6): 60–63Google Scholar
  258. Krauzova VI, Sharyshev AA (1987) Study on subcellular distribution of the enzymes of n-alkane oxidation primary steps in the yeast Candida maltosa (Russ). Biokhimiya 52: 599–606Google Scholar
  259. Krauzova VI, Kuvichkina TN, Sharyshev AA, Romanova IB, Lozinov AB (1986) Lauric acid and NADH synthesis during dodecanol and dodecanal oxidation by membrane fractions of the yeast Candida maltosa grown on hexadecane (Russ). Biokhimiya 51:23–27Google Scholar
  260. Kravtsov EG, Gukasyan IA, Dolgikh MS, Ermolaev AV, Spivak SM (1991) Isolation of antigen-active biopolymers from Candida maltosa culture fluid for obtaining allergens of diagnostic value for examination of industrial microbiology workers (Russ). Gig Tr ProfZabol 3:33–34.Google Scholar
  261. Kreger-van Rij NJW (1984) The yeasts, a taxonomic study. Elsevier, AmsterdamGoogle Scholar
  262. Krug M, Straube G (1986) Degradation of phenolic compounds by the yeast Candida tropicalis HP 15 II. Some properties of the first two enzymes of the degradation pathway. J Basic Microbiol 26: 271–281PubMedGoogle Scholar
  263. Krug M, Ziegler H, Straube G (1985) Degradation of phenolic compounds by the yeast Candida tropicalis HP15 I. Physiology of growth and substrate utilization. J Basic Microbiol 25: 103–110PubMedGoogle Scholar
  264. Kunau W-H, Hartig A (1992) Peroxisome biogenesis in Saccharomyces cerevisiae. Antonie Leeuwenhoek J Microbiol 62: 63–78Google Scholar
  265. Kunau W-H, Bühne S, Moreno de la Garza M, Kionka C, Mateblowski M, Schultz-Borchard U, Thieringer R (1988) Comparative enzymology of β-oxidation. Biochem Soc Trans 16: 418–420PubMedGoogle Scholar
  266. Kunze G (1982) Molekularbiologisch/biochemische Charakterisierung der Genome von Candida sp. EH15, Lodderomyces elongisporus CBS 2605, Saccharomyces cerevisiae D10, Pichia guilliermondii S0809, Pichia guilliermondii S0799 und Pichia guilliermondii fp 1–61. Universität Greifswald, Math Nat Dissertation A, GreifswaldGoogle Scholar
  267. Kunze G, Hecker M, Birnbaum D (1984a) Molecularbiological characterization of genomes from Candida sp. EH 15, Lodderomyces elongisporus CBS 2605, Pichia guilliermondii SO809 and Pichia guilliermondii fp1–61 (Germ). Z Allg Mikrobiol 24: 33–40Google Scholar
  268. Kunze G, Schauer F, Samsonova I, Klinner U, Bode R, Hecker M, Birnbaum D (1984b) Identifizierung zweier Candida maltosa-Stämme mittels DNA-Reassoziation. Z Allg Mikrobiol 24: 607–613Google Scholar
  269. Kunze G, Petzoldt C, Bode R, Samsonova I, Hecker M, Birnbaum D (1985a) Transformation of Candida maltosa and Pichia guilliermondii by a plasmid containing Saccharomyces cerevisiae ARG4 DNA. Curr Genet 9: 205–209PubMedGoogle Scholar
  270. Kunze G, Petzoldt C, Bode R, Samsonova IA, Böttcher F, Birnbaum D (1985b) Transforma-tion of the industrially important yeasts Candida maltosa and Pichia guilliermondii. J Basic Microbiol 25: 141–144Google Scholar
  271. Kunze G, Petzoldt G, Bode R, Samsonova JA, Hecker M, Birnbaum D (1986a) Transformations of the industrially important yeasts Candida maltosa and Pichia guilliermondii. Acta Biotechnol 6: 28Google Scholar
  272. Kunze G, Bode R, Birnbaum D (1986b) Physical mapping and genome organization of mitochondrial DNA from Candida maltosa. Curr Genet 10: 527–530PubMedGoogle Scholar
  273. Kunze G, Bode R, Schmidt H, Samsonova IA, Birnbaum D (1987a) Identification of a lys2 mutant of Candida maltosa by means of transformation. Curr Genet 11: 385–391PubMedGoogle Scholar
  274. Kunze G, Bode R, Schmidt H, Samsonova IA, Birnbaum D (1987b) Identification of a lys2 mutant of Candida maltosa by means of tranformation. 12th Int Spec Symp Yeast Genet of Non-conventional Yeasts, Weimar, 1987, Abstr p 81Google Scholar
  275. Kurtz MB, Kelly R, Kirsch DR (1990) The molecular genetics of Candida albicans. In: Kirsch DR, Kelly R, Kurtz MB (eds) The genetics of Candida. CRC Press, Boca Raton, pp 21–73Google Scholar
  276. Kurtzman CP (1992) rRNA sequence comparison for assessing phylogenetic relationship among yeasts (Minireview). Int J Syst Bacteriol 42: 1–6PubMedGoogle Scholar
  277. Kurtzman CP (1994) Molecular taxonomy of the yeasts. Yeast 10: 1727–1740PubMedGoogle Scholar
  278. Larriba G (1993) Translocation of proteins across the membrane of the endoplasmic reticulum: a place for Saccharomyces cerevisiae. Yeast 9: 441–463PubMedGoogle Scholar
  279. Lebediene E, Jomantiene R, Sasnauskas K (1992) Cloning and sequence analysis of a Candida maltosa gene conferring resistance to formaldehyde. Int Spec Symp Genet Mol Biol Non-conventional Yeasts, Leuenberg near Basel, 1992, AbstrGoogle Scholar
  280. Lerche K-H, Kretzschmar G (1980) Zellelektrophoretische Charakterisierung der Oberfläche von Candida guilliermondii. Z Allg Mikrobiol 20: 641–652PubMedGoogle Scholar
  281. Lerche K-H, Kretzschmar G (1986) Partikelelektrophoretische Charakterisierung der Oberflächeneigenschaften von alkanutilisierenden Hefezellen: chemische Zusammensetzung und Tensidadsorption. Acta Biotechnol 6: 221–231Google Scholar
  282. Leuker CE, Hahn H-M, Ernst JF (1992) β-Galactosidase of Kluyveromyces lactis (Lac4p) as a reporter of the gene expression in Candida albicans and Candida tropicalis. Mol Gen Genet 235: 235–241PubMedGoogle Scholar
  283. Levi JD, Shennan L, Ebbon GP (1979) Biomass from liquid n-alkanes. In: Rose AH (ed) Microbial biomass. Academic Press, London, pp 361–419Google Scholar
  284. Lippoldt A, Bode R, Birnbaum D (1986) Degradation of aromatic amino acids in Candida maltosa. J Basic Microbiol 26: 145–154Google Scholar
  285. Litovskaya AV (1988) Immune response of persons exposed to protein-synthesizing fungi (Russ). Z Mikrobiol Epidemiol Immunobiol 2: 71–75Google Scholar
  286. Litovskaya AV, Mokeeva NV (1990) Comparative evaluation of efficiency of various immunologic reactions with Candida antigens in detecting immediate hypersensitivity (Russ). Z Mikrobiol Epidemiol Immunobiol 9: 89–93Google Scholar
  287. Lloyd AT, Sharp PM (1992) Evolution of codon usage patterns: the extent and nature of divergence between Candida albicans and Saccharomyces cerevisiae. Nucleic Acids Res 20: 5289–5291PubMedGoogle Scholar
  288. Loper JC, Chen C, Dey CR (1985) Gene engineering of yeast for biodegradation: immunological cross-reactivity among cytochrome P450 systems proteins of Saccharomyces cerevisiae and Candida tropicalis. Hazardous Waste Hazardous Mat 2: 131–141Google Scholar
  289. Lopez MC, Nicaud JM, Skinner H, Vergnolles C, Kader JC, Bankaitis V, Gaillardin C (1994) A phosphatidylinositol/phosphatidylcholine transfer protein is required for differentiation of the dimorphic yeast Yarrowia lipolytica from the yeast to the mycelial form. J Cell Biol 124: 113–127Google Scholar
  290. Lottermoser K, Asperger O, Schunck W-H (1994) Polymerase chain reaction mediated detection of cytochrome P450 gene in the yeast Candida apicola. In: Lechner MC (ed) Cytochrome P450. Biochemistry, biophysics and molecular biology. John Libbey Eurotext, Paris, pp 643–646Google Scholar
  291. Ludvik J, Munk V, Dostalek M (1968) Ultrastructural changes in the yeast Candida lipolytica caused by penetration of hydrocarbons into the cell. Experentia 24: 1066–1068Google Scholar
  292. Lusky K, Stoyke M, Gobel R, Busch A, Ackermann H (1988) The effect of microbial protein, obtained on a hydrocarbon base (fermosin), with a defined fatty acid composition on fat metabolism and fat composition in slaughter animals. 1. The effect of fermosin on the composition of broiler depot fat (Germ). Nahrung 32: 627–633PubMedGoogle Scholar
  293. Lusky K, Stoyke M, Gobel R, Doberschütz KD, Macholz R (1989) The effect of microbial protein from a hydrocarbon base (fermosin) with a defined fatty acid composition on fat metabolism and fat composition in slaughter animals. 2. The effect of “fermosin” on the composition of back fat m hogs (Germ). Nahrung 33: 203–212PubMedGoogle Scholar
  294. Magasanik B (1992) Regulation of nitrogen utilization. In: Jones EW, Pringle JR, Broach JB (eds) The molecular and cellular biology of the yeast Saccharomyces: gene expression, vol II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 283–317Google Scholar
  295. Magee BB, Magee PT (1987) Electrophoretic karyotypes and chromosome numbers in Candida species. J Gen Microbiol 133: 425–430PubMedGoogle Scholar
  296. Magee PT, Rikkerink EH, Magee BB (1988) Methods for the genetics and molecular biology of Candida albicans. Anal Biochem 175: 361–372PubMedGoogle Scholar
  297. Maksimova GN, Berestennikova ND, Antokhina VI, Levandovskaya YB, Pozmogova IN (1988) Content of lipid inclusions, free and bound lipids in the Candida maltosa cells at different paraffin concentrations in the culture medium. Appl Biochem Microbiol (Moscow) 24: 549–553Google Scholar
  298. Manakov MN, Prishepov FA (1986) The kinetics of monosaccharide digestion by the yeast of the genus Candida (Russ). Biotekhnologiya 0(2): 13–18Google Scholar
  299. Marahrens Y, Stillman B (1992) A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255: 817–823PubMedGoogle Scholar
  300. Maraz A, Kiss M, Ferency L (1978) Protoplast fusion in Saccharomyces cerevisiae strains of identical and opposite mating type. FEMS Microbiol Lett 3: 319–322Google Scholar
  301. Masuda Y, Park SM, Ohkuma M, Ohta A, Takagi M (1994) Expression of an endogenous and a heterologous gene in Candida maltosa by using a promoter of a newly isolated phos-phoglycerate kinase (PGK) gene. Curr Genet 25: 412–417PubMedGoogle Scholar
  302. Mauersberger S (1985) Regulation und subzelluläre Verteilung des Cytochrom P-450 Monooxygenasesystems und anderer am Alkanmetabolismus beteiligter Enzyme in Candida Hefen. Dissertation, Akademie der Wissenschaften der DDR, BerlinGoogle Scholar
  303. Mauersberger S (1991) Mutants of alkane oxidation in the yeasts Yarrowia lipolytica and Candida maltosa. In: Finogenova TV, Sharyshev AA (eds) Alkane metabolism and oversynthesis of metabolites by microorganisms. Center for Biological Research USSR Academy of Sciences, Pushchino, pp 59–78Google Scholar
  304. Mauersberger S, Matyashova RN (1980) The content of cytochrome P-450 in yeast cells growing on hexadecane (Russ). Mikrobiologiya 49: 571–577Google Scholar
  305. Mauersberger S, Matyashova RN, Müller H-G, Losinov AB (1980) Influence of the growth substrate and the oxygen concentration in the medium on the cytochrome P-450 content in Candida guilliermondii. Eur J Appl Microbiol Biotechnol 9: 285–294Google Scholar
  306. Mauersberger S, Schunck W-H, Müller H-G (1981) The induction of cytochrome P-450 in Lodderomyces elongisporus. Z Allg Mikrobiol 21: 313–321PubMedGoogle Scholar
  307. Mauersberger S, Schunck W-H, Müller H-G (1984) The induction of cytochrome P-450 in the alkane-utilizing yeast Lodderomyces elongisporus: alterations in the microsomal membrane fraction. Appl Microbiol Biotechnol 19: 29–35Google Scholar
  308. Mauersberger S, Kärgel E, Matyashova RN, Müller H-G (1987) Subcellular organization of alkane oxidation in the yeast Candida maltosa. J Basic Microbiol 27: 565–582Google Scholar
  309. Mauersberger S, Böhmer A, Schunck W-H, Müller H-G (1991) Cytochrome P-450 of the yeast Yarrowia lipolytica. Int Conf Biochemistry, Biophysics of Cytochrome P-450: Structure, Function, Biotechnological and Ecological Aspects, Moscow 1991, AbstrGoogle Scholar
  310. Mauersberger S, Persiyanova TB, Avetisova SM, Sokolov YI, Kärgel E, Kraft R, Schunck W-H, Davidov ER, Müller H-G (1992a) Characterization of two cytochrome P-450 forms purified from the yeast Candida maltosa. In: Archakov AI, Bachmanova GI (eds) Cytochrome P-450: biochemistry and biophsics. INCO — TNC, Joint Stock Company Moscow, pp 651–653Google Scholar
  311. Mauersberger S, Drechsler H, Oehme G, Müller H-G (1992b) Substrate specificity and stereoselectivity of the fatty alcohol oxidase from the yeast Candida maltosa. Appl Microbiol Biotechnol 37: 66–73Google Scholar
  312. Maximova GN, Vorobyova GI, Grigoryeva SP (1972) The question of hydrocarbon localization in the yeast cells of Candida guilliermondii NP-4 grown in media with paraffins (Russ). Prikl Biokhim Mikrobiol 8: 197–206Google Scholar
  313. Meissel MN, Medvedeva GA, Kozlova TM (1976) Cytological mechanisms of alkane assimilation by yeast (Russ). Mikrobiologiya 45: 844–851Google Scholar
  314. Menzel R, Scheller U, Schunck W-H, Müller H-G (1992) Inducible high-level expression of cytochromes P-450 CYP52A3 and CYP52A4 from Candida maltosa in Saccharomyces cerevisiae. In: Archakov AI, Bachmanova GI (eds) Cytochrome P-450: biochemistry and biophysics, INCO — TNC, Joint Stock Company, Moscow, pp 654–656Google Scholar
  315. Menzel R, Kärgel E, Wolff C, Vogel F, Schunck W-H (1994) High level expression of integral membrane proteins induces proliferation of the endoplasmic reticulum. In: Lechner MC (ed) Cytochrome P450. Biochemistry, biophysics and molecular biology, John Libbey Eurotext, Paris, pp 307–310Google Scholar
  316. Menzel R, Kärgel E, Vogel F, Böttcher C, Schunck W-H (1996) Membrane integration of cytochrome P450 and ER-proliferarion are related processes. (submitted)Google Scholar
  317. Metz W, Reuter G (1977) Anabole und katabole Enzyme des Harnstoffmetabolismus in einem kohlenwasserstoffverwertenden Stamm von Candida guilliermondii. Z Allg Mikrobiol 17: 599–610PubMedGoogle Scholar
  318. Meyer SA, Anderson K, Brown RE, Smith MT, Yarrow D, Mitchell G, Ahearn DG (1975) Physiological and DNA characterization of Candida maltosa, a hydrocarbon-utilizing yeast. Arch Microbiol 104: 225–231PubMedGoogle Scholar
  319. Michaleva W, Garbalinsky VA, Botnikova TA, Karnoz GV, Melnik RA (1973a) Utilization of n-paraffins of different molecular weight by Candida guilliermondii (Russ). Prikl Biokhim Mikrobiol 10: 35–41Google Scholar
  320. Michaleva W, Gradova NB, Koslova LJ, Roschkova MI, Shdanniková JN, Welikoslavinskaja OI, Triems K, Pohland D, Glombitza F, Wünsche L, Kersten D-C, Schneider J (1973b) Verfahren zur Gewinnung von Futterhefe. GDR patent, DD WP 105.825Google Scholar
  321. Mikhailova NP, Durasova EN, Vyunov KA (1987) Analysis of sterol mutants of Candida maltosa: genetic and biochemical aspects. 12th Int Spec Symp on Yeast, Weimar, Abstr, p 79Google Scholar
  322. Mikhailova NP, Sorokoletova EF, Durasova EN, Vyunov KA, Shapovalov OI (1991) Sterol composition of nystatin-resistant Candida maltosa mutants. Folia Microbiol 36: 148–152Google Scholar
  323. Minkevich IG, Baumann F, Rogge G, Heinritz B (1988) Ratio of heat production to oxygen consumption during the cell cycle of Candida maltosa EH 15 grown on ethanol. Acta Biotechnol 8: 435–444Google Scholar
  324. Mishina M, Kamiryo T, Tashiro S, Hagihara T, Tanaka A, Fukui S, Osumi M, Numa S (1978) Subcellular localization of two long-chain acyl-coenzyme-A-synthetases in Candida lipolytica. Eur J Biochem 89: 321–328PubMedGoogle Scholar
  325. Montrocher R (1980) Significance of immunoprecipitation in yeast taxonomy: Antigenic analyses of some species within the genus Candida. Cell Mol Biol 26: 293–302Google Scholar
  326. Müller H, Voigt B (1981) Untersuchungen zur chemischen Zusammensetzung der Lipidfraktion von Lodderomyces elongisporus EH 15. Acta Biotechnol 1: 279–284Google Scholar
  327. Müller H, Voigt B (1984) Bestimmung von freiem und gebundenem Ergosterol in Mikroorganismen. Z Allg Mikrobiol 24: 61–64PubMedGoogle Scholar
  328. Müller H-G, Schunck W-H, Riege P, Honeck H (1979) The alkane-hydroxylating enzyme system of the yeast Candida guilliermondii. Acta Biol Med Ger 38: 345–349PubMedGoogle Scholar
  329. Müller H-G, Mauersberger S, Schunck W-H, Riege P, Honeck H, Huth J (1980) The alkane-hydroxylating cytochrome P-450 system of yeast: regulation in vivo and progress in isolation. In: Gustafsson J-A et al. (eds) Biochemistry, biophysics and regulation of cytochrome P-450. Elsevier, Amsterdam, pp 251–254Google Scholar
  330. Müller H-G, Schunck W-H, Riege P, Honeck H (1982) The alkane monooxygenase system of the yeast Lodderomyces elongisporus: Purification of the cytochrome P-450 and the NADPH-cytochrome P-450 reductase and reconstitution experiments. In: Hietanen E et al. (eds) Cytochrome P-450 — biochemistry, biophysics and environmental implications. Elsevier, Amsterdam, pp 445–448Google Scholar
  331. Müller H-G, Mauersberger S, Schunck W-H, Wiedmann B (1983a) Enzyminduktion in der Hefe Lodderomyces elongisporus in Gegenwart von n-Alkanen. Z Allg Mikrobiol 23:589–593Google Scholar
  332. Müller H-G, Schunck W-H, Kärgel E (1991a) Cytochromes P-450 of alkane-utilizing yeasts (Review). In: Ruckpaul K, Rein H (eds) Frontiers in biotransformation vol 4. Akademie Verlag, Berlin, pp 87–126Google Scholar
  333. Müller H-G, Kärgel E, Mauersberger S, Schunck W-H, Wiedmann B (1991b) Alkane catabo-lism in yeast — new results of the 1980s. In: Finogenova TV, Sharyshev AA (eds) Alkane metabolism and oversynthesis of metabolites by microorganisms. Center for Biological Research USSR Academy of Sciences, Pushchino, pp 3–16Google Scholar
  334. Müller R, Markuske KD, Babel W (1983b) Verbesserung der Y-Werte bei Wachstum von Hansenula polymorpha auf Methanol durch simultane Verwertung von Glucose. Z Allg Mikrobiol 23: 375–384PubMedGoogle Scholar
  335. Müller RH, Babel W (1988) Energy and reducing equivalent potential of C2-compounds for microbial growth. Acta Biotechnol 8: 249–258Google Scholar
  336. Müller RH, Babel W (1989) Kontinuierliche nicht-fermentative Synthese von Aceton. Wiss Z Karl Marx Univ Leipz Math-Naturwiss Reihe 38: 269–302Google Scholar
  337. Muramatsu S, Hanada H, Nirasawa K, Yoshida M (1982) Mutagenicity tests for mice bred under the condition of long-continued feeding of single-cell protein diets. Bull Natl Inst Anim Ind 38: 23–32Google Scholar
  338. Muraoka S, Ohkuma M, Ohta A, Takagi M (1993) Regulation of gene expression on n-alkane-inducible cytochrome P450s in Candida maltosa. 2nd Int Symp Cytochrome P450 Microorganisms Plants, Tokyo, June 13–17, 1993, Abstr, p 2Google Scholar
  339. Muraoka S, Ohkuma M, Takagi M (1994) Recent advances on regulation of gene expression by hydrophobic compounds using yeast systems (Japanese). Tanpakushitsu-Kakusan-Koso 39: 521–529PubMedGoogle Scholar
  340. Müsch A (1993) Die molekulare Umgebung einer naszierenden Polypeptid-Kette während ihrer Translokation in Hefe-Mikrosomen. Dissertation, Humboldt Universität, BerlinGoogle Scholar
  341. Mutoh H, Mochizuki M, Ohta A, Takagi M (1995) Inducible expression of a gene encoding a L41 ribosomal protein responsible for the cycloheximide-resistant phenotype in the yeast Candida maltosa. J Bacteriol 177: 5383–5386PubMedGoogle Scholar
  342. Nabeshima S, Tanaka S, Fukui S (1970) Studies on the hydrocarbon utilization by microorganisms XII. Comparison of the polysaccharide contents of yeast cells grown on hydrocarbons and glucose. J Ferment Technol 4: 556–562Google Scholar
  343. Nakase T, Komagata K (1971) Significance of DNA base composition in the classification of the genus Candida. J Gen Appl Microbiol 17: 259–279Google Scholar
  344. Nakase T, Fukazawa Y, Tsuchiya T (1972) A comparative study on two forms of Candida tropicalis (Cast.) Berkhout. J Gen Appl Microbiol 18: 349–363Google Scholar
  345. Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O, Okuda K, Nebert D (1993) The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 12: 1–51PubMedGoogle Scholar
  346. Neujahr HY (1990) Yeast in biodegradation and biodeterioration processes. In: Verachtert H, De Mot R (eds) Yeast biotechnology and biocatalysis. Marcel Dekker, New York, pp 321–348Google Scholar
  347. Nunziata A, Argentino-Storino A, Mercatelli P, Salerno RO (1982) Two year toxicity in beagle dogs fed a new protein source. Arch Toxicol Suppl 5: 378–381Google Scholar
  348. Nüske J, Grimmecke HD, Reuter G (1982) Polysaccharid-Strukturen von Zellwand-Präparaten aus der Futtereiweiß-Hefe Candida sp. H. Z Allg Mikrobiol 22: 477–486Google Scholar
  349. Odds FC (1987) Candida infections: an overview. CRC Crit Rev Microbiol 15: 1–5Google Scholar
  350. Ogorodnikova TE, Durasova EN, Sinitskaya NA, Orlov AI, Mikhailova NP, Vyunov KA (1991) Biochemical basis of different nystatin resistance of Saccharomyces cerevisiae and Candida maltosa yeast mutants (Russ). Mikrobiologiya 60: 26–33 (Microbiology, New York 60: 680–686, English Translation 1992)Google Scholar
  351. Ogrydziak DM (1988) Development of genetic maps of nonconventional yeasts. J Basic Microbiol 28: 185–196PubMedGoogle Scholar
  352. Ohama T, Suzuki T, Mori M, Osawa S, Ueda T, Watanabe K, Nakase T (1993) Non-universal decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res 21: 4039–4045PubMedGoogle Scholar
  353. Ohkuma M (1993) Study on n-alkane-inducible cytochrome P-450 gene family in Candida maltosa (Japanese). PhD Thesis, Tokyo UniversityGoogle Scholar
  354. Ohkuma M, Hikiji T, Tanimoto T, Schunck W-H, Müller H-G, Yano K, Takagi M (1991a) Evidence that more than one gene encodes n-alkane-inducible cytochrome P-450s in Candida maltosa, found by two-step gene disruption. Agric Biol Chem 55: 1757–1764PubMedGoogle Scholar
  355. Ohkuma M, Tanimoto T, Yano K, Takagi M (1991b) CYP52 (cytochrome P450alk) multigene family in Candida maltosa: molecular cloning and nucleotide sequence of the two tandemly arranged genes. DNA Cell Biol 10: 271–82PubMedGoogle Scholar
  356. Ohkuma M, Muraoka S, Hwang CW, Ohta A, Takagi M (1993a) Cloning of the C-URA3 gene and construction of a triple auxotroph (his5, ade1, ura3) as a useful host for the genetic engineering of Candida maltosa. Curr Genet 23: 205–210PubMedGoogle Scholar
  357. Ohkuma M, Hwang CW, Masuda Y, Nishida H, Sugiyama J, Ohta A, Takagi M (1993b) Evolutionary position of n-alkane-assimilating yeast Candida maltosa shown by nucleotide sequence of small-subunit ribosomal-RNA gene. Biosci Biotech Biochem 57:1793–1794Google Scholar
  358. Ohkuma M, Muraoka S, Ohta A, Takagi M (1993c) A cytochrome P450alk gene family in Candida maltosa: chromosomal mapping and gene disruption. 2nd Int Symp Cytochrome P450 Microorganisms Plants, Tokyo, June 13–17, 1993, Abstr, p 3Google Scholar
  359. Ohkuma M, Kawai S, Takagi M (1994a) Subject 1. Isolation and characterization of an ARS for Candida maltosa. In: Maresca B, Kobayashi GS (eds) Molecular biology of pathogenic fungi, a laboratory manual. Telos Press, New York, pp 213–220Google Scholar
  360. Ohkuma M, Muraoka S, Takagi M (1994b) Subject 2. Construction of host-vector systems in Candida maltosa. In: Maresca B, Kobayashi GS (eds) Molecular biology of pathogenic fungi, a laboratory manual. Telos Press, New York, pp 221–226Google Scholar
  361. Ohkuma M, Muraoka S, Tanimoto T, Fujii M, Ohta A, Takagi M (1995a) CYP52 (cytochrome P450alk) multigene family in Candida maltosa: identification and characterization of eight members. DNA Cell Biol 14: 163–173PubMedGoogle Scholar
  362. Ohkuma M, Park S-M, Zimmer T, Menzel R, Vogel F, Schunck W-H, Ohta A, Takagi M (1995b) Proliferation of intracellular membrane structures upon homologous overproduction of cytochrome P-450 in Candida maltosa. Biochim Biophys Acta (Biomembranes) 1236: 163–169Google Scholar
  363. Ohkuma M, Masuda Y, Park S-M, Ohtomo R, Ohta A, Takagi M (1995c) Evidence that the expression of the gene for NADPH-cytochrome P-450 reductase is n-alkane-inducible in Candida maltosa. Biosci Biotech Biochem 59: 1328–1330Google Scholar
  364. Ohkuma M, Zimmer T, Iida T, Schunck W-H, Ohta A, Takagi M (1995d) Isozyme function of n-alkane-inducible cytochrome P450 in Candida maltosa by sequential gene disruption (in preparation)Google Scholar
  365. Ohkuma M, Kobayashi K, Kawai S, Hwang CW, Ohta A, Takagi M (1995e) Identification of a centromeric activity in the autonomously replicating TRA region allows improvement of the host-vector system of Candida maltosa. Mol Gen Genet 249: 447–455PubMedGoogle Scholar
  366. Okino H, Taoka A, Uemura N (1986) Production of macrocyclic musk compounds, via alkanedioic acids produced from n-alkanes. In: Lawrence BM, Mookherjee BD, Willis BJ (eds) Flavors and fragrances: a world perspective. Elsevier, Amsterdam, pp 753–760Google Scholar
  367. Oliver SG (1988) Replication and recombination in gene establishment in non-Saccharomy-ces yeasts. J Basic Microbiol 28: 197–208PubMedGoogle Scholar
  368. Oliver SG et al. (1992) The complete DNA sequence of yeast chromosome III. Nature 357: 38–46PubMedGoogle Scholar
  369. Osumi M, Miwa N, Teranishi Y, Tanaka A, Fukui S (1974) Ultrastructure of Candida yeasts grown on n-alkanes. Appearance of microbodies and its relationship to high catalase activity. Arch Microbiol 99: 181–201PubMedGoogle Scholar
  370. Osumi M, Fukuzumi F, Teranishi Y, Tanaka A, Fukui S (1975a) Development of microbodies in Candida tropicalis during incubation in a n-alkane medium. Arch Microbiol 103: 1–11Google Scholar
  371. Osumi M, Fukuzumi F, Yamada N, Nagatani T, Teranishi Y, Tanaka A, Fukui S (1975b) Surface structure of some Candida yeast cells grown on n-alkanes. J Ferment Technol 53: 244–248Google Scholar
  372. Palmiter RD (1974) Magnesium precipitation of ribonucleoprotein complexes. Expedient techniques for the isolation of undegraded polysomes and messenger ribonucleic acid. Biochem 13: 3606–3614Google Scholar
  373. Park SM, Ohkuma M, Masuda Y, Ohta A, Takagi M (1996) Galactose-inducible expression systems in Candida maltosa using promoters of newly-isolated GAL1 and GAL10 genes. (submitted)Google Scholar
  374. Pekelis MV, Ermolaev AV, Ushomirskaya MS, Orlova LM, Gukasyan IA (1989) Immunochemical study of surface glycoconjugates of yeast-like fungi of the Candida genus (Russ). Prikl Biokhim Mikrobiol 25: 390–396PubMedGoogle Scholar
  375. Perri GC, Nunziata A, Argentino-Storino A, Salerno RO, Mercatelli P (1981) Long-term toxicity and carcinogenicity of a new protein source in rats. Toxicol Eur Res 3: 305–310PubMedGoogle Scholar
  376. Picataggio S, Deanda K, Mielenz J (1991) Determination of Candida tropicalis acyl coenzyme A oxidase isozyme function by sequential gene disruption. Mol Cell Biol 11: 4333–4339PubMedGoogle Scholar
  377. Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD (1992) Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxy-lic acids. Bio/Technology 10: 849–898Google Scholar
  378. Pogorelskaia SA, Mokeeva NV, Makarova IB (1991) The rate of isolation of fungi in the genus Candida from the nasopharyngal mucosa of those in contact with the products from microbial protein manufacture (Russ). Zh Mikrobiol Epidemiol Immunobiol 3: 24–26Google Scholar
  379. Polnisch E, Hofmann KH (1989) Cyclic AMP, fructose-2,6-bisphosphate and catabolite inactivation of enzymes in the hydrocarbon-assimilating yeast Candida maltosa. Arch Microbiol 152: 269–272PubMedGoogle Scholar
  380. Polnisch E, Kneifel H, Franzke H, Hofmann KH (1992) Degradation and dehalogenation of monochlorophenols by the phenol-assimilating yeast Candida maltosa. Biodegradation 2: 193–199Google Scholar
  381. Polumienko AL, Grigorieva SP (1985) New yeast vectors containing autonomously replicating sequences from Candida maltosa genome (Russ). Molek Genet Mikrobiol Vir 7: 26–31Google Scholar
  382. Popov B, Reuter G, Meyer HW (1980) Cell wall regeneration of Candida spec. protoplasts. Z Allg Mikrobiol 20: 47–62PubMedGoogle Scholar
  383. Poulter R (1990) Classical methods for the genetic analysis of Candida albicans. In: Kirsch DR, Kelly R, Kurtz MB (eds) The genetics of Candida. CRC Press, Boca Raton, pp 75–123Google Scholar
  384. Präve P, Faust U, Sittig W, Sukatsch DA (1982) Handbuch der Biotechnologie. Akademische Verlagsgesellschaft WiesbadenGoogle Scholar
  385. Pringle JR, Adams AEM, Drubin DG, Haarer BK (1991) Immunofluorescence methods for yeast. Methods Enzymol 194: 565–602PubMedGoogle Scholar
  386. Rabinovich EG, Yegorova VN, Smirnova OY, Inge-Vechtomov SG (1974) Hydrocarbon-utilizing mutants of Saccharomyces cerevisiae. Part II to VI. Suppression of sporulation, copulation, and mitotic recombination in Hyc° and Hyc+ mutants (Russ). Genetika 10: 93–99 and related papers of the series in this issue. Rachubinski RA (1990) Genetic methods for and gene structure in other Candida species. In: Kirsch DR, Kelly R, Kurtz MB (eds) The genetics of Candida. CRC Press, Boca Raton, pp 177–186Google Scholar
  387. Rademacher K-H, Reuter G (1978) Zur Struktur des Mannans von Candida guilliermondii H. Z Allg Mikrobiol 18: 63–66PubMedGoogle Scholar
  388. Rehm HJ (1986) Single cell protein production from petroleum derivatives and its utilization as food and feed. In: Alani DI, Moo-Young M (eds) Perspectives in biotechnology and applied microbiology. Elsevier, New York, pp 1–16Google Scholar
  389. Rehm HJ, Reiff I (1981) Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Adv Biochem Eng 19: 175–215Google Scholar
  390. Rehm HJ, Reiff I (1982) Regulation der mikrobiellen Alkanoxidation mit Hinblick auf die Produktsynthese. Acta Biotechnol 2: 127–138Google Scholar
  391. Reiser J, Glumoff V, Kälin M, Ochsner U (1990) Transfer and expression of heterologous genes in yeast other than Saccharomyces cerevisiae. In: Fiechter A (ed) Advances in biochemistry engineering/biotechnol vol 43. Springer, Berlin Heidelberg New York, pp 76–102Google Scholar
  392. Riege P, Schunck W-H, Honeck H, Müller H-G (1980) Eigenschaften des Cytochrom P-450-abhängigen alkanhydroxylierenden Enzymsystems aus Candida guilliermondii. Wiss Z Ernst Moritz Arndt Univ Greifswald 29: 125–126Google Scholar
  393. Riege P, Schunck W-H, Honeck H, Müller, H-G (1981) Cytochrome P-450 from Lodderomyces elongisporus: its purification and some properties of the highly purified protein. Biochem Biophys Res Commun 98: 527–534PubMedGoogle Scholar
  394. Riege P, Blasig R, Müller H-G, Heidenreich G, Bauch J (1989) Influence of oxygen and substrate supply on the metabolism of Candida maltosa during cultivation on n-alkanes. Appl Microbiol Biotechnol 32: 101–107Google Scholar
  395. Riggsby WS (1990) Physical characterization of the Candida albicans genome. In: Kirsch DR, Kelly R, Kurtz MB (eds) The genetics of Candida. CRC Press, Boca Raton, pp 125–145Google Scholar
  396. Ringpfeil M (1983) SCP-Produktion auf der Basis von Kohlenwasserstoffen. Acta Biotechnol 3: 227–240Google Scholar
  397. Röber B (1985) Katabole Repression bei aeroben und O2-limitiertem Wachstum -energetische und stoffliche Bilanz des Kohlenhydratmetabolismus bei Hefen. J Basic Microbiol 25: 581–590Google Scholar
  398. Röber B, Reuter G (1979) Biosynthese der Zellwand-Polysaccharide Mannan und Glucan als Spiegelbild unterschiedlicher Abbauwege der Glucose durch Candida sp. H. Z Allg Mikrobiol 19: 187–194PubMedGoogle Scholar
  399. Röber B, Reuter G (1982) In vitro-Einbau von 14C-Hexose-6-Phosphat in Mannan, β-Glucan und Glycogen bei Candida sp. H und ihren Mutanten. Z Allg Mikrobiol 22: 671–673PubMedGoogle Scholar
  400. Röber B, Reuter G (1984a) Control of catabolic and anabolic sequences of carbohydrate utilization in the scp yeast Candida maltosa H and its mutants H3 and H5 (Germ). Z Allg Mikrobiol 24: 41–55Google Scholar
  401. Röber B, Reuter G (1984b) Regulation of the glucopolysaccharide biosynthesis in the scp yeast Candida sp. H by precursor preparation (Germ). Z Allg Mikrobiol 24: 167–177Google Scholar
  402. Röber B, Reuter G (1984c) Mannan-biosynthesis in microsome fractions from protoplast-lysates of Candida maltosa H (Germ). Z Allg Mikrobiol 24: 179–188Google Scholar
  403. Röber B, Reuter G (1984d) Regulation of proteophosphomannan biosynthesis in the scp yeast Candida maltosa H by precursor preparation (Germ). Z Allg Mikrobiol 24: 317–328Google Scholar
  404. Röber B, Reuter G (1985) Effector- and precursor-function of mannose-6-phosphate, mannose-1-phosphate, UDP-n-acetylglucosamine and dolichylphosphate in the proteophosphomannan biosynthesis of the scp yeast Candida maltosa H (Germ). J Basic Microbiol 25: 243–264Google Scholar
  405. Röber B, Stolle J, Reuter G (1984a) Properties of hexokinase from Candida maltosa H, a SCP yeast (Germ). Z Allg Mikrobiol 24: 619–627Google Scholar
  406. Röber B, Stolle J, Reuter G (1984b) Properties of the glucose-6-phosphate dehydrogenase from Candida maltosa H, a SCP yeast (Germ). Z Allg Mikrobiol 24: 629–636Google Scholar
  407. Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8: 423–488PubMedGoogle Scholar
  408. Rose MD, Winston F, Hieter P (eds) (1990) Methods in yeast genetics. A laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  409. Rylkin SS, Berezov TB, Gurina LV, Belova LA, Shulga AV, Orlova VS, Saubenova MG (1974) Composition of cell wall of Candida tropicalis during growth on glucose and n-alkanes (Russ). Mikrobiologiya 43: 551–552Google Scholar
  410. Rymond BC, Rosbach M (1992) Yeast pre-mRNA splicing. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces, vol 2, Gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 143–192Google Scholar
  411. Sakajo S, Minagawa N, Yoshimoto A (1993) Characterization of the alternative oxidase protein in the yeast Hansenula anomala. FEBS Lett 8: 310–312Google Scholar
  412. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  413. Samsonova I, Klinner U, Böttcher F (1987) Genetic studies on Candida maltosa. 12th Int Spec Symp Genet Non-conventional Yeasts, Weimar, 1987, Abstr, p21Google Scholar
  414. Sanglard D, Fiechter A (1989) Heterogeneity within the alkane-inducible cytochrome P450 gene family of the yeast Candida tropicalis. FEBS Lett 256: 128–133PubMedGoogle Scholar
  415. Sanglard D, Loper JC (1989) Characterization of the alkane-inducile cytochrome P450 (P450alk) gene from the yeast Candida tropicalis: identification of a new P450 gene family. Gene 76: 121–136PubMedGoogle Scholar
  416. Sasnauskas K, Jomantiene R, Geneviciute E, Januska A, Lebedys J (1991) Molecular cloning of the Candida maltosa ADE1 gene. Gene 107: 161–164PubMedGoogle Scholar
  417. Sasnauskas K, Jomantiene R, Januska A, Lebediene E, Lebedys J, Janulaitis A (1992a) Cloning and analysis of a Candida maltosa gene which confers resistance to formaldehyde in Saccharomyces cerevisiae. Gene 122: 207–211PubMedGoogle Scholar
  418. Sasnauskas K, Jomantiene R, Lebediene E, Lebedys J, Januska A, Janulaitis A (1992b) Molecular cloning and analysis of autonomous replicating sequence of Candida maltosa. Yeast 8: 253–259PubMedGoogle Scholar
  419. Sasnauskas K, Jomantiene R, Lebediene E, Lebedys J, Januska A, Janulaitis A (1992c) Cloning and sequence analysis of a Candida maltosa gene which confers resistance to cyclo-heximide. Gene 116: 105–108PubMedGoogle Scholar
  420. Sattler K, Wünsche L (1981) Aufnahme von Kohlenwasserstoffen durch Hefen (Teil I). Acta Biotechnol 0: 15–20Google Scholar
  421. Sattler K, Wünsche L (1983) Möglichkeiten der Gewinnung von Koppelprodukten der mikrobiellen Eiweißsynthese auf der Basis von Kohlenwasserstoffen. Acta Biotechnol 3: 345–350Google Scholar
  422. Schauer F (1988) Zur Physiologie des Kohlenwasserstoffabbaus in Candida maltosa. Universität Greifswald, Math-Nat, Dissertation BGoogle Scholar
  423. Schauer F, Schauer M (1986) Alkanassimilierende Hefen. Systematische Stellung und Erfassung einiger Leistungsgrenzen. Wiss Z EMA Univ Greifswald Math Naturwiss Reihe 35: 14–23Google Scholar
  424. Schauer F, Hofmann KH, Köhler M (1986) The subterminal oxidation of aliphatic hydrocarbons in Candida maltosa. In: Microbe 86, 14th Int Congr Microbiol, Manchester, Abstr, p 255Google Scholar
  425. Schauer F, Lindow S, Schauer M, Samsonova I, Böttcher F (1987) Oxidation of n-alkanes by Pichia guilliermondii and induction of mutants. 12th Int Spec Symp Genet of Non-conventional Yeasts, Weimar, 1987, Abstr, p 57Google Scholar
  426. Scheda R (1966) Kohlenwasserstoffe zehrende Hefen. Die Branntweinwirtschaft 106: 373–376Google Scholar
  427. Scheller U, Schunck W-H, Müller H-G (1992) Characterization of two different alkane-inducible P-450 forms from Candida maltosa by means of heterologous expression in Saccharomyces cerevisiae. In: Archakov AI, Bachmanova GI (eds) Cytochrome P-450: biochemistry and biophysics. INCO — TNC, Joint Stock Company, Moscow, pp 662–664Google Scholar
  428. Scheller U, Kraft R, Schröder K-L, Schunck W-H (1994) Generation of the soluble and functional cytosolic domain of microsomal cytochrome P450 52A3. J Biol Chem 269: 12779–12783PubMedGoogle Scholar
  429. Scheller U, Zimmer T, Kärgel E, Schunck W-H (1996) Characterization of the n-alkane and fatty acid hydroxylating cytochrome P450 forms 52A3 and 52A4. Arch Biochem (in press)Google Scholar
  430. Schindler J, Meusdoerffer F, Giesel-Bühler H (1990) Microbial production in industrial chemicals: Basic features of dicarboxylic acid production by yeasts (Germ). Forum Mikrobiol 5: 274–281Google Scholar
  431. Schmidt H (1988) Lysinmetabolismus der Hefen Candida maltosa und Pichia guilliermondii. Univ Greifswald, Math-Nat Dissertation AGoogle Scholar
  432. Schmidt H, Bode R (1992) Characterization of a novel enzyme, N6-acetyl-L-lysine: 2-oxoglutarate aminotransferase, which catalyzes the second step of lysine catabolism in Candida maltosa. Antonie Leeuwenhoek J Microbiol 62: 285–290Google Scholar
  433. Schmidt H, Bode R, Lindner M, Birnbaum D (1985) Lysine biosynthesis in the yeast Candida maltosa: properties of some enzymes and regulation of the biosynthetic pathway. J Basic Microbiol 25: 675–681Google Scholar
  434. Schmidt H, Bode R, Birnbaum D (1988) Lysine degradation in Candida maltosa: occurrence of a novel enzyme, acetyl-CoA:L-lysine N-acetyltransferase. Arch Microbiol 150: 215–218Google Scholar
  435. Schmidt H, Bode R, Samsonova IA, Birnbaum D (1989a) Isolation and characterization of alpha-aminoadipate-delta-semialdehyde overproducing mutants from yeasts. FEMS Microbiol Lett 60: 201–204Google Scholar
  436. Schmidt H, Bode R, Samsonova IA, Birnbaum D (1989b) Production of alpha-aminoadipate-delta-semialdehyde by a mutant from Candida maltosa. Appl Microbiol Biotechnol 31: 463–466Google Scholar
  437. Schneider JD, Triems K (1981) Einfluß extracellulärer Kaliumionenkonzentrationen auf die celluläre Natriumkonzentration von Lodderomyces elongisporus D. Acta Biotechnol 1: 197–199Google Scholar
  438. Schneider JD, Hansel R, Hedlich R, Jechorek M (1983) Growth characteristics of a thermotolerant strain of Lodderomyces elongisporus grown on sucrose. Acta Biotechnol 3: 13–19Google Scholar
  439. Schult I (1987) Enzymologische Studien über mutabile Gene bei Candida maltosa. Ernst-Moritz-Arndt-Universität Greifswald, DDR, Sektion Biologie, Dissertation AGoogle Scholar
  440. Schult I, Samsonova I, Böttcher F (1987) Induction of unstable genes in Candida maltosa. 12th Int Spec Symp Non-conventional Yeast, Weimar, 1987, Abstr, p 22Google Scholar
  441. Schunck W-H, Riege P, Blasig R, Honeck H, Müller H-G (1978a) Cytochrome P-450 and alkane hydroxylase in Candida guilliermondii. Acta Biol Med Ger 37: K3–K7PubMedGoogle Scholar
  442. Schunck W-H, Riege P, Kuhl R (1978b) Cytochrome P-450 of eukaryotic microorganisms. Pharmazie 33: 410–415Google Scholar
  443. Schunck W-H, Riege P, Müller H-G, Scheler W (1983a) Isolation and some molecular properties of cytochrome P-450 from the alkane assimilating yeast Lodderomyces elongisporus (Russ.) Biokhimiya (Moscow) 48: 518–526Google Scholar
  444. Schunck W-H, Riege P, Honeck H, Müller H-G (1983b) Isolierung und Rekonstitution des Alkan-Monooxygenase-Systems der Hefe Lodderomyces elongisporus. Z Allg Mikrobiol 23: 653–660Google Scholar
  445. Schunck W-H, Mauersberger S, Huth J, Riege P, Müller H-G (1987a) Function and regulation of cytochrome P-450 in alkane-assimilating yeast I. Selective inhibition with carbon monoxide in growing cells. Arch Micriol 147: 240–244Google Scholar
  446. Schunck W-H, Mauersberger S, Kärgel E, Huth J, Müller H-G (1987b) Function and regulation of cytochrome P-450 in alkane-assimilating yeast II. Effect of oxygen-limitation. Arch Microbiol 147: 245–248Google Scholar
  447. Schunck W-H, Kießling U, Strauss M, Kärgel E, Wiedmann B, Mauersberger S, Gaestel M, Gross B, Müller H-G (1989a) Cloning of a cDNA for the alkane hydroxylating P-450 from Candida maltosa. In: Schuster I (ed) Biochemistry and biophysics of cytochrome P-450. Taylor & Francis, London, pp 656–659Google Scholar
  448. Schunck W-H, Kärgel E, Gross B, Wiedmann B, Mauersberger S, Köpke K, Kießling U, Strauss M, Gaestel M, Müller H-G (1989b) Molecular cloning and characterization of the primary structure of the alkane hydroxylating cytochrome P-450 from the yeast Candida maltosa. Biochem Biophys Res Commun 181: 843–850Google Scholar
  449. Schunck WH, Vogel F, Gross B, Kärgel E, Mauersberger S, Köpke K, Gengnagel C, Müller HG (1991) Comparison of two cytochromes P-450 from Candida maltosa: primary structures, substrate specificities and effects of their expression in Saccharomyces cerevisiae on the proliferation of the endoplasmic reticulum. Eur J Cell Biol 55: 336–345PubMedGoogle Scholar
  450. Schunck W-H, Scheller U, Juretzek T (1996) Generation of the cytosolic domain of microsomal P450 52A3 after high-level expression in Saccharomyces cerevisiae. Methods Enzym (in press)Google Scholar
  451. Schuster G, Voigt B, Müller H (1990) The influence of combined treatments with 2,4-dioxohexahydro-1,3,5-triazine (DHT) and lipophilic fractions from the yeast Candida maltosa IMET H128 on virus symptoms and tuber mass of identical potato eye cutting plants. Z Pflanzenkr Pflanzenschutz 97: 84–86Google Scholar
  452. Schwarz E, Mülling K, Samsonova I, Schauer F, Böttcher F (1987) Genetic studies of n-alkane uitilization of Candida maltosa. 12th Int Spec Symp Genet of Non-conventional Yeasts, Weimar, 1987, Abstr, p 75Google Scholar
  453. Seghezzi W, Sanglard D, Fiechter A (1991) Characterization of a second alkane-inducible cytochrome P450-encoding gene, CYP52A2, from Candida tropicalis. Gene 106: 51–60PubMedGoogle Scholar
  454. Seghezzi W, Meili C, Ruffiner R, Kuenzi R, Sanglard D, Fiechter A (1992) Identification and characterization of additional members of the cytochrome P450 multigene family CYP52 of Candida tropicalis. DNA Cell Biol 11: 767–780PubMedGoogle Scholar
  455. Senez JC (1986) The economical aspects of single cell protein production from petroleum derivatives. In: Alani DI, Moo-Young M (eds) Perspectives in biotechnology and applied microbiology. Elsevier, New York, pp 33–48Google Scholar
  456. Sharp PM, Touhy TM, Mosurski KR (1986) Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acid Res 14: 5125–5143PubMedGoogle Scholar
  457. Sharyshev AA, Krauzova VI (1988) Fractionation of subcellular membrane organelles of the yeast Candida maltosa in Percoll gradients (Russ). Biologicheskie Membrany (Biological Membranes) 5: 187–197Google Scholar
  458. Sharyshev AA, Matyashova RN, Komarova GN (1983) Cytochrome P-450 assay in Candida and Saccharomyces cells under various growth conditions. Int Symp Environ Regulation Microbial Metabolism, Pushchino 1983, Abstr, pp 33–34Google Scholar
  459. Shennan JL (1984) Hydrocarbons as substrates in industrial fermentations. In: Atlas PR (ed) Petroleum microbiology. Macmillan, New York, pp 643–683Google Scholar
  460. Shennan JL, Levi JD (1974) The growth of yeasts on hydrocarbons. In: Hockenhull DJD (ed) Progress in industrial microbiology, vol 13. Churchill Livingstone Edinburgh, pp 1–57Google Scholar
  461. Shiio I, Uchio R (1971) Microbial production of long-chain dicarboxylic acids from n-alkanes. Part I. Screening and properties of microorganisms producing dicarboxylic acids. Agric Biol Chem 35: 2033–2042Google Scholar
  462. Shilova NK, Matyashova RN, Ilchenko AP (1989) The effect of aeration on the activity of alcohol oxidase and enzymes utilizing hydrogen peroxide in the course Candida maltosa growth on paraffin (Russ). Mikrobiologiya 58: 430–435Google Scholar
  463. Shkumatov VM (1993) Heterologous reconstitution of monooxygenases. 2nd Int Symp Cytochrome P450 Microorganisms Plants, Tokyo, June 13–17, 1993, Abstr, p 28Google Scholar
  464. Silva J, Laborda RR, Almendro G, Salim R (1990) Detection of opportunistic yeast pathogens in hospitalized immunocompromised patients. Rev Latinoam Microbiol 32: 261–264Google Scholar
  465. Sinanyan ES, Davidova EG, Davtyan MA, Davidov ER (1989) Synthesis of thermal shock proteins in the mesophilic strain of the yeast Candida maltosa and in its thermotolerant mutant (Russ). Izv Timiryazev Skh Akad 0(2): 195–199Google Scholar
  466. Sinanyan ES, Davtyan MA, Davidov ER (1990) Proteolytic activity of mesophilic and thermophilic yeast Candida maltosa in thermal and ethanol shock (Russ). Biol Zh Arm 43: 96–100Google Scholar
  467. Slavikova E, Grabinska-Loniewska A (1990) Taxonomical study of yeasts and yeast-like microorganisms isolated from the denitrification unit Biocenosis. Acta Mycol (Warsaw) 23: 81–88 (1987, published 1990)Google Scholar
  468. Smith NG, Bourquin AW, Crow SA, Ahearn DG (1976) Effect of heptachlor on hexadecane utilization by selected fungi. Dev Ind Microbiol 17: 331–336Google Scholar
  469. Smith RH, Palmer R (1976). A chemical and nutritional evaluation of yeast and bacteria as dietary protein sources for rats and pigs. J Sci Food Agric 27: 763–770PubMedGoogle Scholar
  470. Snow R (1966) An enrichment method for auxotrophic yeast mutants using the antibiotic nystatin. Nature 211: 206–207PubMedGoogle Scholar
  471. Sokolov YI, Davidov ER, Demano va NF, Gololobov AD (1981) Utilization of alkyl aromatic hydrocarbons by the yeast Candida guilliermondii (Russ). Prikl Biokhim Mikrobiol 17: 660–668Google Scholar
  472. Sokolov YI, Avetisova SM, Davidov ER (1986a) Isolation, purification, and porperties of cytochrome P-450 from yeast of the genus Candida grown on n-alkanes (Russ). Biokhimiya 51: 1649–1654Google Scholar
  473. Sokolov YI, Avetisova SM, Davydov RM, Davidov ER (1986b) Detection of two cytochrome P450 forms participating in the alkane oxidation of Candida yeast (Russ). Dokl Akad Nauk SSSR 286: 1506–1511Google Scholar
  474. Soll DR (1990) Dimorphism and high-frequency switching in Candida albicans. In: Kirsch DR, Kelly R, Kurtz MB (eds) The genetics of Candida. CRC Press, Boca Raton, pp 148–176Google Scholar
  475. Soom YO (1973) Mutants of Saccharomyces cerevisiae utilizing n-alkanes. I. Isolation and characterization of mutants (Russ). Genetika 9: 95–101PubMedGoogle Scholar
  476. Souza AE, Myler PJ, Stuart KD (1993) The alkane-inducible Candida maltosa ALI1 gene product is an NADH: ubiquinone oxidoreductase subunit homologue. Gene 137: 349–350PubMedGoogle Scholar
  477. Spivak SM, Gukasyan IA, Ogarkov VI (1988) Effect of non-pathogenic yeast-like fungi of the genus Candida on the process of forming immediate hypersensitivity to heterologous protein in guinea pigs (Russ). Gig Sanit 9: 75–76PubMedGoogle Scholar
  478. Spivak SM, Gukasyan IA, Ermolaev AV, Ustinenko AN, Antonovicha LA (1989) Study of sensitizing properties of yeast-like fungi of the genus Candida in the production of dietary proteins (Russ). Gig Sanit 6: 77–79PubMedGoogle Scholar
  479. Stepanjuk W (1981) On the nuclear origin of peroxisomes as possible precursors of mitochondria in hydrocarbon-oxidizing yeasts of the genus Candida (Russ). Zitologiya 23: 369–377Google Scholar
  480. Stichel E, Glombitza F, Iske U (1981) Parafinübergang aus der Kohlenwasserstoffphase zur Hefezelle. Acta Biotechnol 1: 9–15Google Scholar
  481. Stichel E, Rogge G, Bley T, Heinritz B (1982) Yield coefficients in dependence on milieu conditions and cell states. III. Induction of synchrony in continuous yeast cell cultivation by milieu changes (Lodderomyces elongisporus). Z Allg Mikrobiol 22: 717–722PubMedGoogle Scholar
  482. Strick CA, James LC, O’Donnell MM, Gollaher MG, Franke AE (1992) The isolation and characterization of the pyruvate kinase encoding gene from the yeast Yarrowia lipolytica. Gene 118: 65–72 (and correction in Gene 140: 141–143)Google Scholar
  483. Su CS, Meyer SA (1991) Characterization of mitochondrial DNA in various Candida species: isolation, restriction endonuclease analysis, size, and base composition. Int J Syst Bacteriol 41:6–14PubMedGoogle Scholar
  484. Sudbery PE (1994) The non-Saccharomyces yeasts. Yeast 10: 1707–1726PubMedGoogle Scholar
  485. Sudoh M, Nagahashi S, Doi M, Ohta A, Takagi M, Arisawa M (1993) Cloning of the chitin synthase 3 gene from Candida albicans and its expression during yeast-hyphal transition. Mol Gen Genet 241: 351–358PubMedGoogle Scholar
  486. Sugiyama H, Ohkuma M, Masuda Y, Park S-M, Ohta A, Takagi M (1995) In vivo evidence for non-universal usage of the codon CUG in Candida maltosa. Yeast 11: 43–52PubMedGoogle Scholar
  487. Sunairi M, Watabe K, Takagi M, Yano K (1984) Increase of translatable mRNA for major microsomal proteins in n-alkane-grown Candida maltosa. J Bacteriol 160: 1037–1040PubMedGoogle Scholar
  488. Sunairi M, Suzuki R, Takagi M, Yano K (1988) Self-cloning of genes for n-alkane assimilation from Candida maltosa. Agric Biol Chem 52: 577–579Google Scholar
  489. Suzuki T, Ueda T, Ohama T, Osawa S. Watanabe K (1993) The gene for serine tRNA having anticodon sequence CAG in a pathogenic yeast, Candida albicans. Nucleic Acid Res 21: 356PubMedGoogle Scholar
  490. Takagi M (1992) Host-vector system and reverse genetics in a non-conventional yeast, Candida maltosa. In: Mongkolsuk SP, Lovett PS, Trempy JE (eds) Biotechnology and environmental science: molecular approaches. Plenum Press, New York, pp 13–22Google Scholar
  491. Takagi M (1993) Reverse genetics in a non-conventional yeast, Candida maltosa. In: Maresca E, Kobayashi GS, Yamaguchi H (eds), Molecular biology and its application ot medical mycology. NATO ASI Series, vol H 69. Springer, Berlin Heidelberg New York, pp 13–22Google Scholar
  492. Takagi M, Moriya K, Yano K (1980a) Induction of cytochrome P450 in petroleum-assimilating yeast. I. Selection of a strain and basic characterization of cytochrome P450 induction in the strain. Cell Mol Biol 25: 363–369Google Scholar
  493. Takagi M, Moriya K, Yano K (1980b) Induction of cytochrome P450 in petroleum-assimilating yeast. II. Comparison of protein synthesizing activity in cells grown on glucose and n-tetradecane. Cell Mol Biol 25: 371–375Google Scholar
  494. Takagi M, Kawai S, Takata Y, Tanaka N, Sunairi M, Miyazaki M, Yano K (1985) Induction of cycloheximide resistance in Candida maltosa by modifying the ribosomes. J Gen Appl Microbiol 31: 267–275Google Scholar
  495. Takagi M, Kawai S, Chang MC, Shibuya I, Yano K (1986a) Construction of a host-vector system in Candida maltosa by using an ARS site isolated from its genome. J Bacteriol 167: 551–555PubMedGoogle Scholar
  496. Takagi M, Kawai S, Shibuya I, Miyazaki M, Yano K (1986b) Cloning in Saccharomyces cerevisiae of a cycloheximide resistance gene from the Candida maltosa genome which modifies ribosomes. J Bacteriol 168: 417–419PubMedGoogle Scholar
  497. Takagi M, Kobayashi N, Sugimoto M, Fujii T, Watari J, Yano K (1987) Nucleotide sequencing analysis of a LEU gene of Candida maltosa which complements leuB mutation of Escherichia coli and leu2 mutation of Saccharomyces cerevisiae. Curr Genet 11:451–457PubMedGoogle Scholar
  498. Takagi M, Uchino S, Sugimoto M, Kawai S, Hikiji T, Yano K (1988) Construction of promoter-probe vectors for Candida maltosa, a n-alkane-assimilating yeast, using the LEU2 gene of Saccharomyces cerevisiae. J Basic Microbiol 28: 335–342PubMedGoogle Scholar
  499. Takagi M, Ohkuma M, Kobayashi N, Watanabe M, Yano K (1989) Purification of cytochrome P-450alk from n-alkane-grown cells of Candida maltosa, and cloning and nucleotide sequencing of the encoding gene. Agric Biol Chem 53: 2217–2226Google Scholar
  500. Tan H, Okazaki K, Kubota I, Kamiryo T, Utiyama H (1990) A novel peroxisomal nonspecific lipid-transfer protein from Candida tropicalis. Gene structure, purification and possible role in β-oxidation. Eur J Biochem 190: 107–112PubMedGoogle Scholar
  501. Tanaka A, Fukui S (1989) Metabolism of n-alkanes In: Rose AH, Harrison JS (eds) The yeasts, vol 3, 2nd edn, Metabolism and physiology of yeasts. Academic Press, London, pp 261–287Google Scholar
  502. Tanaka A, Ohishi N, Fukui S (1967) Studies on the formation of vitamins and their function in hydrocarbon fermentation. Production of vitamin B6 by Candida albicans in hydrocarbon medium. J Ferment Technol 45: 617–623Google Scholar
  503. Tanaka A, Osumi M, Fukui S (1982) Peroxisomes of alkane-grown yeast: fundamental and practical aspects. Ann NY Acad Sci 386: 183–199PubMedGoogle Scholar
  504. Tanaka H, Takagi M, Yano K (1987) Separation of chromosomal DNA molecules of Candida maltosa on agarose gels using the OF AGE technique. Agric Biol Chem 51: 3161–3163Google Scholar
  505. Tannenbaum SR, Wang DIC (1975) Single cell protein II. MIT Press, CambridgeGoogle Scholar
  506. Tokuyasu KT (1986) Application of cryoultramicrotomy to immunocytochemistry. J Microsc 143: 139–149PubMedGoogle Scholar
  507. Tokuyasu KT (1989) Use of poly(vinylpyrrolidone) and poly(vinyl alcohol) for cryoultramicrotomy. Histochem J 21: 163–171PubMedGoogle Scholar
  508. Taoka A (1986) Production of brassylic acid by fermentation. Biolndustry 3: 867–874Google Scholar
  509. Triebel H, Grimmecke HD, Kretzschmer K, Bär H (1980) Molecular weight determination on a mannan-protein-phosphate complex from the cell wall of the yeast Candida sp. H. Stud Biophys 82: 47–54Google Scholar
  510. Truchatshova TV, Ermolenko TM, Gubina LP, Radyuk VG, Shkumatov VM (1991) Analysis, fractionation and industrial technology of hydrocarbon-assimilating Candida maltosa. 15th Int Spec Symp on Yeast, Riga, Latvia 1991, pp 180–181Google Scholar
  511. Tschumper G, Carbon J (1982) Delta sequences and double symmetry in a yeast chromosomal replicator region. J Mol Biol 156: 239–307Google Scholar
  512. Uchio R (1978) Microbial production of long-chain dicarboxylic acids from n-alkanes. Petrol Microorg 20: 13–16Google Scholar
  513. Uchio R, Shiio I (1972a) Microbial production of long-chain dicarboxylic acids from n-alkanes Part II. Production by Candida cloacae mutant unable to assimilate dicarboxylic acid. Agric Biol Chem 36: 426–433Google Scholar
  514. Uchio R, Shiio I (1972b) Production of dicarboxylic acids by Candida cloacae mutants unable to assimilate n-alkane. Agric Biol Chem 36: 1169–1175Google Scholar
  515. Uchio R, Shiio I (1972c) Tetradecane-l,14-dicarboxylic acid production from n-hexadecane by Candida cloacae. Agric Biol Chem 36: 1389–1397Google Scholar
  516. Uchio R, Shiio I (1974) Microbial production of long-chain dicarboxylic acids from n-alkanes. Petrol Microorg 11: 14–23Google Scholar
  517. Uemura N (1985) Industrialization of the production of dibasic acids from paraffins using microoganisms (Japanese). Hakko to Kogyo 43: 436–441Google Scholar
  518. Uemura N, Taoka A, Takagi M (1988) Production of dicarboxylic acids by fermentation. In: Applewhite TH (ed) World conference on biotechnology of fats and oil industry. American Oil Chemist’s Society, pp 148–152Google Scholar
  519. Umemura I, Yanagiya K, Komatsubara S, Sato T, Tosa T (1990) D-alanine production by using asymmetric degrading activity of Candida maltosa. Ann NY Acad Sci 613: 659–662Google Scholar
  520. Umemura I, Yanagiya K, Komatsubara S, Sato T, Tosa T (1991) Characteristics of alanine aminotransferase from Candida maltosa. In: Fukui T, Kagamiyama K, Soda K, Wada H (eds) Enzymes dependent on pyridoxal phosphate and other carbonyl compounds as cofactors. Pergamon Press, Oxford, pp 229–231Google Scholar
  521. Umemura I, Yanagiya K, Komatsubara S, Sato T, Tosa T (1992) D-alanine production from D,L-alanine by Candida maltosa with asymmetric degrading activity. Appl Microbiol Biotechnol 36: 722–726Google Scholar
  522. Umemura I, Yanagiya K, Komatsubara S, Sato T, Tosa T (1994) Purification and some properties of alanine aminotransferase from Candida maltosa. Biosci Biotech Biochem 58: 283–287Google Scholar
  523. Van Tuinen E, Riezman H (1987) Immunolocalization of glyceraldehyde-3-phosphate dehydrogenase, hexokinase, and carboxypeptidase Y in yeast cells at the ultrastructural level. J Histochem Cytochem 35: 327–333PubMedGoogle Scholar
  524. Van Uden N, Buckley H (1970) Genus Candida Berkhout. In: Lodder J (ed) The yeasts, a taxonomic study. North-Holland Publ, Amsterdam, pp 893–1087Google Scholar
  525. Veenhuis M, Kram AM, Kunau WH, Harder W (1990) Excessive membrane development following exposure of the methylothrophic yeast Hansenula polymorpha to oleic acid-containing media. Yeast 6: 511–519Google Scholar
  526. Vergeres G, Yen TSB, Aggeler J, Lausier J, Waskell L (1993) A model system for studying membrane biogenesis. Overexpression of cytochrome b5 in yeast results in marked proliferation of the intracellular membrane. J Cell Sci 106: 249–259PubMedGoogle Scholar
  527. Vier B, Voigt B (1984) Untersuchungen zur Anreicherung von Ergosterol und Ubichinon aus Lipid-Kohlenwasserstoff-Fraktionen. Acta Biotechnol 4: 377–379Google Scholar
  528. Viljoen BC, Kock JLF, Britz TJ (1988) The significance of long-chain fatty acid composition and other phenotypic characteristics in determining relationships among some Pichia and Candida species. Gen Microbiol 134: 1893–1900Google Scholar
  529. Villalba JM, Palmgren MG, Berberian GE, Ferguson C, Serrano R (1992) Functional expression of plant plasma membrane H+-ATPase in yeast endoplasmic reticulum. J Biol Chem 267: 12341–12349PubMedGoogle Scholar
  530. Vogel F, Kärgel E, Schunck W-H (1991) In situ localization of cytochrome P-450, the first enzyme involved in aliphatic hydrocarbon degradation in the yeast Candida maltosa. Progr Histochem Cytochem 23: 383–389Google Scholar
  531. Vogel F, Gengnagel C, Kärgel E, Müller H-G, Schunck W-H (1992) Immunocytochemical localization of alkane-inducible cytochrome P450 and its NADPH-dependent reductase in the yeast Candida maltosa. Eur J Cell Biol 57: 285–291PubMedGoogle Scholar
  532. Voigt B, Seidel H, Müller H, Beck D, Ringpfeil M, Riedel M, Bauch J, Gentzsch H, Bohlmann D (1979) Biolipidextrakt — ein neuer Rohstoff aus der Produktion von “Fermosin”- Futterhefe auf Basis Erdöldestillat. Chem Techn 31: 409–411Google Scholar
  533. Voigt B, Reutgen H, Worbs M, Sesser I (1984a) Untersuchungen zur Anreicherung von Ubichinon-9 aus Lipid-Kohlenwasserstoff-Fraktionen mittels Sephadex LH-20. Acta Biotechnol 4: 137–141Google Scholar
  534. Voigt B, Müller H, Worbs M, Winkler F, Köhler U (1984b) Untersuchungen zur Anreicherung von Ubichinon-9 aus Lipid-Kohlenwasserstoff-Fraktionen mittels Kurzwegdestillation. Acta Biotechnol 4: 293–296Google Scholar
  535. Voigt B, Müller H, Schuster G (1985) Antiphytovirale Aktivität von lipophilen Fraktionen aus der Hefe Lodderomyces elongisporus IMET H 128. Acta Biotechnol 5: 313–317Google Scholar
  536. Volchek EA, Durasova EN, Mukhlenov AG, Mikhailova NP, Vyunov KA (1988) Sterol composition of nystatin-resistant Candida maltosa strains (Russ). Izv AN SSSR Ser Biol 0(6): 915–921Google Scholar
  537. Watanabe K (1974) Production of SCP with hydrocarbon-assimilating yeasts (Japanese). J Ferm Assoc Japan (Hakko-Kyokai-Shi) 32: 239–248Google Scholar
  538. Watanabe K, Shimada Y, Kawaharada K, Suzuki K, Tanaka F (1973a) Kanegafuchi Chemical Industry Co, Ltd, Japan, Japan Patent 48–43877Google Scholar
  539. Watanabe K, Shimada Y, Kawaharada K, Suzuki K, Tanaka F (1973b) Kanegafuchi Chemical Industry Co, Ltd, Japan, US Patent 3725 200Google Scholar
  540. Watanabe K, Shimada Y, Kawaharada K, Suzuki K, Tanaka F (1973c) Kanegafuchi Chemical Industry Co, Ltd, Japan, British Patent 1307 434Google Scholar
  541. Watanabe K, Shimada Y, Kawaharada K, Suzuki K, Tanaka F (1975) Kanegafuchi Chemical Industry Co, Ltd, Japan, German Patent 2454 048Google Scholar
  542. Waters MG, Blobel G (1986) Secretory protein translocation in a yeast cell-free system can occur posttranslationally and requires ATP hydrolysis. J Cell Biol 102: 1543PubMedGoogle Scholar
  543. Weber H, Barth G (1988) Nonconventional yeasts: their genetics and biotechnological applications. CRC Crit Rev Biotechnol 7: 281–337Google Scholar
  544. Wedler H, Schulze S, Budahn H, Januschka A, Sasnauskas K, Böttcher F, Becher D (1990) Gentechnische Bearbeitung von Hefearten mit biotechnologischer Bedeutung. Wiss Z Ernst Moritz Arndt Univ Greifswald, Math Naturwiss Reihe 39: 27–30Google Scholar
  545. White MJ, Hodgson LF, Rose AH, Hammond RC (1989) Long-chain alcohol production by yeasts. Yeast Apr 5 Spec Issue S456–470Google Scholar
  546. Wiame J-M, Grenson M, Arst HN (1985) Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol 26: 1–88PubMedGoogle Scholar
  547. Wiedmann B (1987) Untersuchungen zur Biosynthese des Cytochrom P450 aus Candida maltosa. Akademie der Wissenschaften der DDR, Dissertation, BerlinGoogle Scholar
  548. Wiedmann B, Wiedmann M, Kärgel E, Schunck W-H, Müller H-G (1986) n-Alkanes induce the synthesis of cytochrome P-450 mRNA in Candida maltosa. Biochem Biophys Res Commun 36: 1148–1154Google Scholar
  549. Wiedmann B, Wiedmann M, Schunck W-H, Mauersberger S, Kärgel E, Müller H-G (1987) Regulation of cytochrome P-450 biosynthesis in alkane assimilating yeasts. In: Zelinka J, Balan J (eds) Proc 6th Int Symp Metabol Enzymol Nucleic Acids Includ Gene Manipul, Bratislava 1987, pp 383–393Google Scholar
  550. Wiedman B, Wiedmann M, Mauersberger S, Schunck W-H, Müller H-G (1988a) Oxygen limitation induced indirectly the synthesis of cytochrome P-450 mRNA in alkane-grow-ing Candida maltosa. Biochem Biophys Res Commun 150: 859 – 865Google Scholar
  551. Wiedmann M, Wiedmann B, Voigt S, Wachter E, Müller HG, Rapoport TA (1988b) Post-translational transport of proteins into microsomal membranes of Candida maltosa. EMBO J 7: 1763–1768PubMedGoogle Scholar
  552. Wiedmann B, Silver P, Schunck W-H, Wiedmann M (1993) Overexpression of the ER-membrane protein P-450 CYP52A3 mimics sec mutant characteristics in Saccharomyces cerevisiae. Biochim Biophys Acta 1153: 267–276PubMedGoogle Scholar
  553. Wright R (1993) Insights from inducible membranes. Curr Biol 3: 870–873PubMedGoogle Scholar
  554. Wright R, Basson M, D’Ari L, Rine J (1988) Increased amounts of HMG-CoA reductase induce “Karmellae”: A proliferation of stacked membrane pairs surrounding the nucleus. J Cell Biol 107: 101–114PubMedGoogle Scholar
  555. Wright R, Keller G, Gould SJ, Subramani S, Rine J (1990) Cell-type control of membrane biogenesis induced by HMG-CoA reductase. New Biol 2: 915–921PubMedGoogle Scholar
  556. Wünsche L, Sattler K, Gradova NB, Meinhold I, Hedlich R, Brendler W, Uhlig H, Rodionova GS, Saikina AI (1981) Composition of the microorganism population in an unprotected fermentation process (Germ). Z Allg Mikrobiol 21: 469–474PubMedGoogle Scholar
  557. Yano K, Kanamuri M, Takagi M (1981) Enrichment of n-alkane assimilation-deficient mutants of Candida yeasts by synergistic effect of nystatin and pyrrolnitrin. Agric Biol Chem 45: 1017–1018Google Scholar
  558. Yekhvalova TV, Sharyshev AA, Mikhailova NP, Vyunov KA (1989) Cytochrome P450 content in yeast Saccharomyces cerevisiae with alterations of different stages of sterol synthesis (Russ). Biokhimiya 54: 1344–1347Google Scholar
  559. Yokogawa T, Suzuki T, Ueda T, Mori M, Ohama T, Kuchino Y, Yoshinari S, Motoki I, Nishikawa K, Osawa S, Watanabe K (1992) Serine tRNA complementary to the nonuniversal serine codon CUG in Candida cylindracea: evolutionary implications. Proc Natl Acad Sci USA 89: 7408–7411PubMedGoogle Scholar
  560. Yoshida M, Hashimoto K (1986a) Assessment of the pathogenicity of yeast used in the production of single cell protein. Agric Biol Chem 50: 2117–2118Google Scholar
  561. Yoshida M, Hashimoto K (1986b) Potential pathogenicity of Candida maltosa IAM 12248. Agrie Biol Chem 50: 2119–2120Google Scholar
  562. Yoshioka K, Fujita A, Kondo S, Miyake T, Sakaki Y, Shiba T (1992) Production of a unique multi-lamella structure in the nuclei of yeast expressing Drosophila copia gag precursor. FEBS Lett 302: 5–7PubMedGoogle Scholar
  563. Zentgraf B (1991a) Microcalorimetric studies of aerobic growth of Candida maltosa I. Chemostat cultures. Thermochim Acta 187: 1–8Google Scholar
  564. Zentgraf B (1991b) Microcalorimetric studies of aerobic growth of Candida maltosa II. Batch cultures. Thermochim Acta 187: 9–14Google Scholar
  565. Zentgraf B (1991c) Bench-scale calorimetry in biotechnology. Thermochim Acta 193: 243–252Google Scholar
  566. Zentgraf B (1993) Calorimetric studies for optimization of high-performance reactors. Pure Appl Chem 65: 1915–1920Google Scholar
  567. Zimmer T, Schunck W-H (1995) A deviation from the universal genetic code in Candida maltosa and consequenses for heterologous expression of cytochromes P450 52A4 and 52A5 in Saccharomyces cerevisiae. Yeast 11: 33–41PubMedGoogle Scholar
  568. Zimmer T, Kaminski K, Serieller U, Vogel F, Schunck W-H (1995) In vivo reconstitution of highly active Candida maltosa cytochrome P450 monooxygenase systems in inducible membranes of Saccharomyces cerevisiae. DNA Cell Biol 14: 619–628PubMedGoogle Scholar
  569. Zinchenko GA, Belov AP (1990) Topography of enzymes of acylglycerol biosynthesis in yeast membranes (Russ). Izv Timiryazev Skh Akad 0(1) 1990: 123–129Google Scholar
  570. Zinchenko GA, Belov AP, Balashova LD, Davidova EG (1990) Specific features of the lipid metabolism in Candida yeasts during assimilation of n-alkenes (Russ). Appl Biochem Microbiol (Moscow) 26: 237–241 (English Translation)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Stephan Mauersberger
    • 1
  • Moriya Ohkuma
    • 2
  • Wolf-Hagen Schunck
    • 1
  • Masamichi Takagi
    • 2
  1. 1.Laboratory of Membrane Proteins, Cell Biology DepartmentMax-Delbrück-Center for Molecular MedicineBerlin-BuchGermany
  2. 2.Cellular Genetics Laboratory, Department of BiotechnologyThe University of TokyoTokyo 113Japan

Personalised recommendations