Skip to main content

Histocompatibility Reactions in Invertebrates

  • Chapter
Invertebrate Immune Responses

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 24))

Abstract

There are compelling reasons to believe that the capacity of cells to discriminate between “self” and “non-self” is shared by all metazoans. The evolution of multicellular organisms must have been accompanied by the development of discriminative cellular recognition systems. Accurate discrimination is a fundamental requisite of systems that regulate the development and differentiation of clonally derived cells to produce cohesive tissues and organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey S, Miller BJ, Cooper EL (1971) Transplantation immunity in annelids. II. Adoptive transfer of the xenograft reaction. Immunology 21: 81–86

    PubMed  CAS  Google Scholar 

  • Bancroft FW (1903) Variation and fusion of colonies in compound ascidians. Proc Calif Acad Sci 3: 137–186

    Google Scholar 

  • Barnes RD (1980) Invertebrate zoology. Holt-Saunders, Tokyo

    Google Scholar 

  • Berrill NJ (1941) The development of the bud in Botryllus. Biol Bull 80: 169–184

    Google Scholar 

  • Berrill NJ (1950) The Tunicata. The Ray Society, London

    Google Scholar 

  • Berrill NJ (1951) Regeneration and budding in tunicates. Biol Rev 27: 456–475

    Google Scholar 

  • Berrill NJ (1955) The origin of vertebrates. Oxford Univ Press, New York

    Google Scholar 

  • Bertheussen K (1979) The cytotoxic reaction in allogeneic mixtures of echinoid phagocytes. Exp Cell Res 120: 373–381

    PubMed  CAS  Google Scholar 

  • Bierne J (1985) Histocompatibility in nemerteans: fates of multiparental Lineus constructed by grafting of pieces from many donors. Am Zool 25: 137–144

    Google Scholar 

  • Bigger CH (1980) Interspecific and intraspecific acrorhagial aggressive behaviour among sea anemones: a recognition of self and not-self. Biol Bull 159: 117–134

    Google Scholar 

  • Bigger CH, Runyan R (1979) An in situ demonstration of self-recognition in gorgonians. Dev Comp Immunol 3: 591–597

    PubMed  CAS  Google Scholar 

  • Bigger CH, Hildemann WH, Jokiel PL, Johnston IS (1981) Afferent sensitization and efferent cytotoxicity in allogeneic tissue responses of the marine sponge Callyspongia diffusa. Transplantation 31: 461–464

    PubMed  CAS  Google Scholar 

  • Bigger CH, Jokiel PL, Hildemann WH, Johnston IS (1982) Characterization of alloimmune memory in sponges. J Immunol 129: 1570–1572

    PubMed  CAS  Google Scholar 

  • Bigger CH, Jokiel PL, Hildemann (1983) Cytotoxic transplantation immunity in the sponge Toxadocia violacea. Transplantation 35: 239–243

    PubMed  CAS  Google Scholar 

  • Burnet FM (1971) Self recognition in colonial marine forms and flowering plants in relation to the evolution of immunity. Nature 232: 21

    Google Scholar 

  • Burnet FM (1974) Invertebrate precursors to immune response. In: Cooper EL (ed) Contemporary topics in immunobiology, vol 4. Plenum Press, New York

    Google Scholar 

  • Buscema M, Van de Vyver G (1983) Variability of allograft rejection processes in Axinella verrucosa. Dev Comp Immunol 7: 613–616

    Google Scholar 

  • Buscema M, Van de Vyver G (1984a) Cellular aspects of alloimmune reactions in sponges of the genus Axinella I. Axinella polypoides J Exp Zool 229: 7–17

    Google Scholar 

  • Buscema M, Van de Vyver G (1984b) Cellular aspects of alloimmune reactions in sponges of the genus, Axinella II: Axinella verrucosa and Axinella damicornis. J Exp Zool 229: 19–32

    Google Scholar 

  • Buscema M, Van de Vyver G (1984c) Allogeneic recognition in sponges: development structure, and nature of the non-merging front in Ephydatia fluviatilis. J Morphol 181: 297–303

    Google Scholar 

  • Buscema M, Van de Vyver G (1985) Cytotoxic rejection of xenografts between marine sponges. J Exp Zool 235: 297–308

    Google Scholar 

  • Buss LW (1982) Somatic cell parasitism and the evolution of somatic tissue compatibility. Proc Natl Acad Sci USA 79: 5337–5344

    PubMed  CAS  Google Scholar 

  • Buss LW, Green DR (1985) Histocompatibility in vertebrates: the relic hypothesis. Dev Comp Immunol 9: 198–201

    Google Scholar 

  • Buss LW, McFadden GS, Green DR (1984) Biology of hydractinid hydroids. 2. Histocompatibility effector system/competitive mechanism mediated by nematocyst discharge. Biol Bull 167: 139–158

    Google Scholar 

  • Buss LW, Moore JL, Green DR (1985) Autoreactivity and self tolerance in invertebrates. Nature 313: 400–402

    Google Scholar 

  • Carton Y (1976) Isogenic, allogenic and xenogenic transplants in an insect species. Transplantation 21: 17–22

    PubMed  CAS  Google Scholar 

  • Cheng TC (1970) Immunity in molluscs with special reference to reactions to transplants. Transplant Proc 2: 226–230

    PubMed  CAS  Google Scholar 

  • Coffaro KA, Hinegardner RT (1977) Immune response in the sea urchin, Lytechinus pictus. Science 197: 1389–1390

    PubMed  CAS  Google Scholar 

  • Cooper EL (1965a) Rejection of body wall xenografts exchanged between Lumbricus terrestris and Eisenia foetida. Am Zool 5: 169–178

    Google Scholar 

  • Cooper EL (1965b) A method of tissue grafting in the earthworm, Lumbricus terrestris. Am Zool 5: 233

    Google Scholar 

  • Cooper EL (1968) Transplantation immunity in annelids. I. Rejection of xenografts exchanged between Lumbricus terrestris and Eisenia foetida. Transplantation 6: 322–337

    PubMed  CAS  Google Scholar 

  • Cooper EL (1969a) Specific tissue graft rejection in earthworms. Science 166: 1414–1415

    PubMed  CAS  Google Scholar 

  • Cooper EL (1969b) Chronic allograft rejection in Lumbricus terrestris. J Exp Zool 171: 69–73

    PubMed  CAS  Google Scholar 

  • Cooper EL (1970) Transplantation immunity in helminths and annelids. Transplant Proc 2: 216–220

    PubMed  CAS  Google Scholar 

  • Cooper EL (1975) Characteristics of cell-mediated immunity and memory in annelids. Adv Exp Med Biol 64: 127–136

    PubMed  CAS  Google Scholar 

  • Cooper EL (1976) Comparative immunology. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Cooper EL (1986) Evolution of histocompatibility. In: Brehelin M (ed) Immunity in invertebrates. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cooper EL, Roch P (1986) Second-set allograft responses in the earthworm, Lumbricus terrestris: kinetics and characteristics. Transplantation 41: 514–520

    PubMed  CAS  Google Scholar 

  • Curtis ASG (1979) Individuality and graft rejection in sponges. In: Larwood G, Rosen BR (eds) Biology and systematics of colonial organisms. Academic Press, New York

    Google Scholar 

  • Curtis ASG, Kerr J, Knowlton N (1982) Graft rejection in sponges. Transplantation 33: 127–133

    PubMed  CAS  Google Scholar 

  • DuPasquier L (1974) The genetic control of histocompatibility reactions: phylogenetic aspects. Arch Biol 85: 91–103

    CAS  Google Scholar 

  • Duprat P (1967) Etude de la prise et du maintien d’un greffon de paroi du corps chez le lombricien, Eisenia foetida. Ann Inst Pasteur 113: 867–881

    CAS  Google Scholar 

  • Duprat-Chateaureynaud P (1970) Specific allograft reactions in Eisenia foetida. Transplant Proc 2: 222–225

    Google Scholar 

  • Ephrussi B, Beadle GW (1937) A technique for transplantation for Drosophila. Am Nat 70: 218–225

    Google Scholar 

  • Eppensteiner JM, Karp RD (1989) The effect of gamma radiation on the xenograft response in the American cockroach. J Insect Physiol 35: 81–93

    Google Scholar 

  • Ertman SC, Davenport D (1981) Tentacular nematocyte discharge and self recognition in Anthopleura elegentissima ( Brandt ). Biol Bull 161: 366–370

    Google Scholar 

  • Evans CW, Curtis ASG (1980) Graft rejection and cytotoxicity in marine sponges. In: Manning MJ (ed) Phylogeny of immunological memory. Elsevier, New York

    Google Scholar 

  • Evans CW, Kerr J, Curtis ASG (1980) Graft rejection and immune memory in sponges. In: Manning M.J. (ed) Phylogeny of immunological memory. Elsevier, Amsterdam

    Google Scholar 

  • Field CG, Olsen GJ, Lane DJ, Glovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239: 748–753

    PubMed  CAS  Google Scholar 

  • Francis L (1973a) Clone specific segregation in the sea anemone Anthopleura elegantissima and some related anemones. Biol Bull 144: 64–72

    Google Scholar 

  • Francis L (1973b) Intraspecific aggression and its effect on the distribution of Anthopleura elegantissima and some related sea anemones. Biol Bull 144: 73–92

    Google Scholar 

  • Francis L (1976) Social organization within clones of the sea anemone, Anthopleura elegantissima. Biol Bull 150: 361–376

    Google Scholar 

  • Francis L (1988) Cloning and aggression among anemones (Coelenterata; Actinaria) of the rocky shore. Biol Bull 174: 241–253

    Google Scholar 

  • Fuke MT (1980) Contact reactions between xenogeneic or allogeneic coelomic cells of solitary ascidians. Biol Bull 158: 304–315

    Google Scholar 

  • Fuke MT (1983) Self and non-self recognition between gametes of the ascidian, Halocynthia roretzi. Wilhelm Roux’s Arch Dev Biol. 192: 347–352

    Google Scholar 

  • Fuke MT, Nakamura I (1985) Pattern of cellular alloreactivity of the solitary ascidian, Halocynthia roretzi, in relation to genetic control. Biol Bull 169: 631–637

    Google Scholar 

  • Fuke MT, Numakunai T (1982) Allogenic cellular reactions between intraspecific variants of the solitary ascidian, Halocynthia roretzi. Dev Comp Immunol 6: 253–261

    PubMed  CAS  Google Scholar 

  • Garstang W (1928) The morphology of Tunicata. J Microsc Sci 72: 51–187

    Google Scholar 

  • George JF, Karp RD, Rhiens LA (1984) Primary integumentary xenograft reactivity in the American cockroach, Periplaneta americana. Transplantation 37: 478–484

    PubMed  CAS  Google Scholar 

  • George JF, Howcroft TK, Karp RD (1987) Primary integumentary allograft reactivity in the American cockroach, Periplaneta americana. Transplantation 43: 514–519

    PubMed  CAS  Google Scholar 

  • Gibson R. (1972) Nemerteans. Hutchinson Univ Library, London

    Google Scholar 

  • Glynn PW (1976) Some physical and biological determinants of coral community structure in the eastern Pacific. Ecol Mongr 46: 431–456

    Google Scholar 

  • Grosberg RK (1988) The evolution of allorecognition specificity in clonal invertebrates. Q Rev Biol 63: 377–412

    Google Scholar 

  • Grosberg RK, Quinn JF (1986) The genetic control and consequences of kin recognition by the larvae of a colonial marine invertebrate. Nature 322: 456–459

    Google Scholar 

  • Hammerberg G, Klein J (1975) Linkage disequilibrium between H-2 and t complexes on chromosome 17 of the mouse. Nature 258: 296–299

    PubMed  CAS  Google Scholar 

  • Hartman RS, Karp RD (1986) Demonstration of immunological memory in the allograft response of the American cockroach. Fed Proc 45: 502

    Google Scholar 

  • Hauenschild C (1954) Genetische und entwicklungsphysiologische Untersuchungen uber Intersexualitat und Gewebevertraglichkeit bei Hydractinia echinata. Wilhelm Roux Arch. Dev Biol 147: 1–41

    Google Scholar 

  • Hauenschild C (1956) Uber die Vererbung einer Gewebevertraglichkeitseigenschaft bei dem Hydroidpolypen Hydractinia echinata. Z Naturforsch 11b: 132–138

    Google Scholar 

  • Heyward AM, Stoddart JA (1985) Genetic structure of two species of Montipora on a patch reef; conflicting results from electrophoresis and histocompatibility. Mar Biol 85: 117–121

    Google Scholar 

  • Hildemann WH (1974) Some new concepts in immunological phylogeny. Nature 250: 116–120

    PubMed  CAS  Google Scholar 

  • Hildemann WH (1979) Immunocompetence and allogenic polymorphism among invertebrates. Transplantation 27: 1–3

    PubMed  CAS  Google Scholar 

  • Hildemann WH, Dix TG (1972) Transplantation reactions of tropical Australian echinoderms. Transplantation 15: 624–633

    Google Scholar 

  • Hildemann WH, Linthicum DS (1981) Transplantation immunity in the palaun sponge, Xestospongia exigua. Transplantation 32: 77–80

    PubMed  CAS  Google Scholar 

  • Hildemann WH, Reddy AL (1973) Phylogeny of immune responsiveness: marine invertebrates. Fed Proc 32: 2188–2194

    PubMed  CAS  Google Scholar 

  • Hildemann WH, Uhlenbruck G (1974) Invertebrate immunology. Progr Immunol 2: 292–296

    Google Scholar 

  • Hildemann WH, Linthicum DS, Vann DC (1975a) Immunoincompatibility reactions in corals ( Coelenterata ). Adv Exp Med Biol 64: 105–114

    PubMed  CAS  Google Scholar 

  • Hildemann WH, Linthicum DS, Vann DC (1975b) Transplantation and immunoincompatibility reactions among reef building corals. Immunogenetics 2: 269–284

    Google Scholar 

  • Hildemann WH, Raison RL, Cheung G, Hull CJ, Akaka L, Okamoto J (1977) Immunological specificity and memory in a scleractinian coral. Nature 270: 219–223

    PubMed  CAS  Google Scholar 

  • Hildemann WH, Johnston IS, Jokiel PL (1979) Immunocompetence in the lowest metazoan phylum: transplantation immunity in sponges. Science 204: 420

    PubMed  CAS  Google Scholar 

  • Hildemann WH, Bigger CH, Johnston IS, Jokiel PL (1980a) Characterisation of transplantation immunity in the sponge, Callyspongia diffusa. Transplantation 30: 362–367

    PubMed  CAS  Google Scholar 

  • Hildemann WH, Jokiel PL, Bigger CH, Johnston IS (1980b) Allogenic polymorphism and alloimmune memory in the coral, Montipora verrucosa. Transplantation 30: 297–301

    PubMed  CAS  Google Scholar 

  • Hostetter RK, Cooper EL (1972) Coelomocytes as effector cells in earthworm immunity. Immunol Commun 1: 155–183

    PubMed  CAS  Google Scholar 

  • Hostetter RK, Cooper EL (1973) Cellular anamnesis in earthworms. Cell Immunol 9: 384–392

    PubMed  CAS  Google Scholar 

  • Hostetter RK, Cooper EL (1974) Earthworm coelomocyte immunity. Contemp Top Immunobiol 4: 91–107

    Google Scholar 

  • Howcroft TK, Karp RD (1987) Demonstration of cell mediated cytotoxicity to allogeneic and xenogeneic tissue in the American cockroach, Periplaneta americana, using a combination in vivo/in vitro assay. Transplantation 44: 129–135

    PubMed  CAS  Google Scholar 

  • Humphreys T (1963) Chemical dissociation and in vitro reconstruction of sponge cell adhesions. I. Isolation and functional demonstration of the components involved. Dev Biol 8: 27–47

    PubMed  CAS  Google Scholar 

  • Ivker F (1966) Histocompatibility and stolon overgrowth between interbreeding strains of Hydractinia echinata. Biol Bull 131: 393–398

    Google Scholar 

  • Ivker F (1972) A hierarchy of histocompatibility in Hydractinia echinata. Biol Bull 143: 162–174

    Google Scholar 

  • Johnston IS (1988) The behaviour of mixed intra-specific and inter-specific reaggregating cell suspensions and the phenomenon of allograft rejection in Callyspongia diffusa and Toxadocia violacea. In: Ruetzler K, Hartman W (eds) New perspectives in sponge biology. Proc 3rd Int Conf on the Biology of Sponges. Smithsonian Inst Press, Washington, DC

    Google Scholar 

  • Johnston IS, Hildemann WH (1983) Morphological correlates of intraspecific grafting reactions in the marine sponge Callyspongia diffusa. Mar Biol 74: 25–33

    Google Scholar 

  • Jokiel PL, Hildemann WH, Bigger CH (1982) Frequency of intercolony graft rejection or acceptance as a measure of population structure in the sponge, Callyspongia diffusa. Mar Biol 71: 135–139

    Google Scholar 

  • Jones SE, Bell WJ (1982) Cell-mediated immune-type responses of the American cockroach. Dev Comp Immunol 6: 35–42

    PubMed  CAS  Google Scholar 

  • Karp RD (1976) Specific immunoreactivity in echinoderms. In: Wright RK, Cooper EL (eds) Phylogeny of thymus and bone-marrow-bursa cells. Elsevier, Amsterdam

    Google Scholar 

  • Karp RD, Duwel-Eby LE (1991) Adaptive immune responses in insects. In: Warr GW, Cohen N (eds) Phylogenesis of immune functions. CRC Press, Boca Raton

    Google Scholar 

  • Karp RD, Hildemann WH (1975) Specific rejection of integumentary allografts by the sea star, Dermasterias imbricata. Adv Exp Med Biol 64: 137–147

    PubMed  CAS  Google Scholar 

  • Karp RD, Hildemann WH (1976) Specific allograft reactivity in the sea star, Dermasterias imbricata. Transplantation 22: 434–439

    PubMed  CAS  Google Scholar 

  • Katow H, Watanabe H (1980) Fine structure of fusion reaction in compound ascidian, Botryllus primigenus ( Oka ). Dev Biol 76: 1–14

    PubMed  CAS  Google Scholar 

  • Kaye H, Oritz T (1981) Strain specificity in a tropical marine sponge. Mar Biol 63: 165–173

    Google Scholar 

  • Kaye HR, Reiswig HM (1985) Histocompatibility responses in Verongia species (Demospongiae): implications of immunological studies. Biol Bull 168: 183–188

    Google Scholar 

  • Kelly K, Cooper EL, Raftos DA (1992) In vitro allogeneic cytotoxicity in the solitary urochordate, Styela clava. J Exp Zool 262: 202–208

    PubMed  CAS  Google Scholar 

  • Kingsley E, Briscoe DA, Raftos DA (1989) The role of histocompatibility in fusion between conspecifics of Styela plicata (Urochordata; Ascidiacea ). Biol Bull 76: 282–289

    Google Scholar 

  • Lackie AM (1993) Immunological recognition of cuticular transplants in insects. Dev Comp Immunol 7: 41–50

    Google Scholar 

  • Lackie AM (1986a) Hemolymph transfer as an assay for immunorecognition in insects. Transplantation 41: 360–363

    PubMed  CAS  Google Scholar 

  • Lackie AM (1986b) Transplantation immunity in arthropods: is immunorecognition merely wound-healing. In: Brehelin M (ed) Immunity in invertebrates. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lafferty KJ, Woolnough J (1977) The origin and mechanism of the allograft reaction. Immunol Rev 35: 231–262

    PubMed  CAS  Google Scholar 

  • Lang JC, (1971) Intraspecific aggression by schleractinian reef corals. I. The rediscovery of Scolymia cubensis. Bull Mar Sci 21: 952–959

    Google Scholar 

  • Lang JC (1973) Intraspecific aggression by schleractinian reef corals. II. Why the race is not always to the swift. Bull Mar Sci 23: 260–271

    Google Scholar 

  • Lange R, Plickert G, Muller WA (1989) Histoincompatibility in a low invertebrate Hydractinia echinata: analysis of the mechanism of rejection. J Exp Zool 249: 284–292

    Google Scholar 

  • Langlet C, Bierne J (1977) The immune response to xenografts in nermetines of the genus, Lineaus. In: Soloman JB, Horton JD (eds) Developmental immunobiology. Elsevier, Amsterdam

    Google Scholar 

  • Langlet C, Bierne J (1982) Immunocompetent cells are responsible for rejection of incompatible xenogenic grafts in Lineus. Transplantation 34: 8–12

    PubMed  CAS  Google Scholar 

  • Langlet C, Bierne J (1983) Experimental evidence for cell-mediated immune responses to incompatible grafts in Lineus ( Nemertea ). Dev Comp Immunol 7: 617–620

    Google Scholar 

  • Langlet C, Bierne J (1984) Immunocompetent cells requisite for graft rejection in Lineus (Invertebrata; Nemertea ). Dev Comp Immunol 8: 547–557

    PubMed  CAS  Google Scholar 

  • Leddy SV, Green DR (1991) Historecognition in the cnidaria. In: Warr GW, Cohen N (eds) Phylogenesis of immune functions. CRC Press, Boca Raton

    Google Scholar 

  • Lemmi CA, Cooper EL (1981) Induction of coelomocyte proliferation by xenografts in the earthworm Lumbricus terrestris. Dev Comp Immunol 5: 73–80

    Google Scholar 

  • Lenhoff HM, Loomis WF (1961) Biology of hydra and some other coelenterates. Univ Miami Press, Coral Cables

    Google Scholar 

  • Linthicum DS, Marks DH, Stein EA, Cooper EL (1977) Graft rejection in earthworms: an electron microscopic study. Eur J Immunol 7: 871–876

    PubMed  CAS  Google Scholar 

  • Milkman R (1967) Genetic and developmental studies on Botryllus schlosseri. Biol Bull 132: 229–243

    Google Scholar 

  • Millar RH (1966) Evolution in ascidians. In: Barnes H (ed) Some contemporary topics in marine science. Allen and Unwin, London

    Google Scholar 

  • Miyazaki I, Hidaka M, Yamazato K (1984) Mechanism of changes in nematocyst composition during formation of sweeper tentacles in the coral, Galaxea fascicularis, Zool Sci 1: 982–991

    Google Scholar 

  • Moscona AA (1963) Studies on cell aggregation: demonstration of materials with selective cell binding ability. Proc Natl Acad Sci USA 49: 742–747

    PubMed  CAS  Google Scholar 

  • Moscona AA (1968) Cell aggregation: properties of specific cell ligands and their role in the formation of multicell systems. Dev Biol 18: 250–277

    PubMed  CAS  Google Scholar 

  • Mukai H (1967) Experimental alteration of fusability in compound ascidians. Sci Rep Kyoiku Daigaku B 13: 51–73

    Google Scholar 

  • Mukai H (1977) Comparative studies on the reproductive organs of four botryllid species. J Morphol 152: 363–370

    PubMed  CAS  Google Scholar 

  • Mukai H, Shimoda H (1986) Studies of histocompatibility in natural populations of freshwater sponges. J Exp Zool 237: 241–255

    Google Scholar 

  • Mukai H, Watanabe H (1974) On the occurrence of colony specificity in some compound ascidians. Biol Bull 147: 411–421

    PubMed  CAS  Google Scholar 

  • Muller WA (1964) Experimentelle Untersuchungen über Stockentwicklung, Polypendifferenzierung und Sexualchimaren bei Hydractinia echinata. Wilhelm Roux Arch 155: 181–268

    Google Scholar 

  • Muller WG, Bernd A, Zahn RK, Kurelec B, Dawes K, Muller I, Uhlenbruck G (1981) Xenograft rejection in marine sponges. Eur J Biochem 116: 573–579

    PubMed  CAS  Google Scholar 

  • Nagashima L, Scofield VL (1981) Studies on the rejection reaction in Botryllus oozooids. Am Zool 21: 984–992

    Google Scholar 

  • Nakaye S (1984) Intra- and inter-specific interaction in porites. Zool Sci 1: 996–1005

    Google Scholar 

  • Neigel JE, Avise JC (1983) Histocompatibility bioassays of population structure in marine sponges. J Heredity 74: 134–170

    Google Scholar 

  • Neigel JE, Avise JC (1985) The precision of histocompatibility response in clonal recognition by tropical marine sponges. Evolution 39: 724–732

    Google Scholar 

  • Neigel JE, Schmahl GP (1984) Phenotypic variation within histocompatibility-defined clones of marine sponges. Science 224: 413–415

    PubMed  CAS  Google Scholar 

  • Oka H (1970) Colony specificity in compound ascidians. The genetic control of fusability. In: Profiles of Japanese science and scientists. Kodansha, Tokyo

    Google Scholar 

  • Oka H, Watanabe H (1957) Colony specificity in compound ascidians as tested by fusion experiments (a preliminary report). Proc Jpn Acad 33: 657–659

    Google Scholar 

  • Oka H, Watanabe H (1960) Problems of colony specificity in compound ascidians. Bull Mar Biol Stn Asamushi 10: 153–155

    Google Scholar 

  • Purcell JE, Kitting CL (1982) Intraspecific aggression and population distribution of the sea anemone, Metridium senile. Biol Bull 153: 355–359

    Google Scholar 

  • Raftos DA (1990a) Cellular restriction of histocompatibility responses in tte solitary urochordate Styela plicata (Urochordata, Ascidiacea). Dev Comp Immunol 15: 241–249

    Google Scholar 

  • Raftos DA (1990b) Morphology of integumentary graft rejection in the solitary urochordate Styela plicata. Cell Tissue Res 261: 389–296

    Google Scholar 

  • Raftos DA, Raison RL (1992) Out of the primordial slime: evolution and the immune system. Today’s Life Sci 14: 16–20

    Google Scholar 

  • Raftos DA, Briscoe DA (1990) Genetic basis of allograft rejection in Styela plicata ( Urochordata, Ascidiacea). J Heredity 81: 160–166

    Google Scholar 

  • Raftos DA, Cooper EL (1991) Proliferation of lymphocyte-like cells from the solitary tunicate, Styela clava, in response to allogeneic stimuli. J Exp Zool 260: 391–400

    PubMed  CAS  Google Scholar 

  • Raftos DA, Tait NN, Briscoe DA (1987a) Allograft rejection and alloimmune memory in the solitary urochordate, Styela plicata. Dev Comp Immunol 11: 343–351

    PubMed  CAS  Google Scholar 

  • Raftos DA, Tait NN, Briscoe DA (1987b) Cellular basis of allograft rejection in the solitary urochordate, Styela plicata. Dev Comp Immunol 11: 713–726

    PubMed  CAS  Google Scholar 

  • Raftos DA, Tait NN, Briscoe DA (1988) Mode of recognition of allogeneic tissue in the solitary urochordate, Styela plicata. Transplantation 45: 1123–1126

    PubMed  CAS  Google Scholar 

  • Raison RL, Hull GJ, Hildemann WH (1976) Allogeneic graft rejection in Montipora verrucosa, a reef building coral. In: Wright RK, Cooper EL (eds) Phylogeny of thymus and bone marrow bursa cells. Elsevier, Amsterdam

    Google Scholar 

  • Reddy AL, Bryan B, Hildemann WH (1975) Integumentary allograft vs autograft reactions in Ciona intestinalis: a protochordate species of solitary tunicate. Immunogenetics 1: 584–590

    Google Scholar 

  • Rinkevich B, Weissman IL (1987) A long term study on fused sub-clones in the ascidian, Botryllus schlosseri: the resorption phenomenon. J Zool (Lond) 213: 717–733

    Google Scholar 

  • Rinkevich B, Weissman IL (1990b) Failure to find alloimmune memory in the resorption phenomenon of Botryllus cytomictical chimera. Eur J Immunol 20: 1775–1779

    PubMed  CAS  Google Scholar 

  • Rinkevich B, Weissman IL (1992a) Allogeneic resorption in colonial protochordates: consequences of nonself recognition. Dev Comp Immunol 16: 275–286

    PubMed  CAS  Google Scholar 

  • Rinkevich B, Weissman IL (1992b) Incidents of rejection and indifference in Fu/HC incompatible protochordate colonies. J Exp Zool 263: 105–111

    PubMed  CAS  Google Scholar 

  • Roch PG (1979) Leukocyte DNA synthesis in grafted lumbricids: an approach to study histocompatibility in invertebrates. Dev Comp Immunol 3: 417–428

    PubMed  CAS  Google Scholar 

  • Roch PG, Valembois P, Du Pasquier L (1975) Response of earthworm leukocytes to concanavalin A and transplantation antigens. Adv Exp Med Biol 64: 45–54

    PubMed  CAS  Google Scholar 

  • Rogener W, Renwrantz L (1984) Destruction of autografts and wound healing in Helix pomatia. Zool Jahrb Physiol 88: 515–527

    Google Scholar 

  • Sabbadin A (1982) Formal genetics of ascidians. Am Zool 22: 765–773

    Google Scholar 

  • Sabbadin A, Zaniolo G (1979) Sexual differentiation of germ cell transfer in the colonial ascidian, Botryllus schlosseri. J Exp Zool 207: 289–304

    Google Scholar 

  • Sauer KP, Muller M, Weber M (1986) Alloimmune memory for glycoprotein recognition molecules in sea anemones competing for space. Mar Biol 92: 73–79

    CAS  Google Scholar 

  • Schlichter D (1976) Maeromolecular mimicry: substances released by sea anemones and their role in the protection of anemone fishes. In: Mackie GO (ed) Coelenterate ecology and behaviour. Plenum Press, New York

    Google Scholar 

  • Schmidt GH (1982) Aggregation and fusion between conspecifics of a solitary ascidian. Biol Bull 162: 195–201

    Google Scholar 

  • Scofield VL (1987) Control of fusability in colonial tunicates. In: Greenberg AH (ed) Invertebrate models: cell receptors and cell communication. Karger, Basel

    Google Scholar 

  • Scofield VL, Nagashima LS (1983) Morphology and genetics of rejection reactions between oozooids from the tunicate, Botryllus schlosseri. Biol Bull 165: 733–744

    Google Scholar 

  • Scofield VL, Schlumpberger JM, West LA, Weissmann IL (1982a) Protochordate allorecognition is controlled by an MHC-like gene system. Nature 295: 499–502

    PubMed  CAS  Google Scholar 

  • Scofield VL, Schlumpberger JM, Weissman IL (1982b) Colony specificity in the colonial tunicate Botryllus and the origins of vertebrate immunity. Am Zool 22: 783–794

    Google Scholar 

  • Sheppard CRC (1979) Interspecific aggression between reef corals with reference to their distribution. Mar Ecol Prog Ser 1: 237–247

    Google Scholar 

  • Simpson T (1973) Coloniality among the porifera. In: Boardman RS, Cheetham AH, Olivier WA (eds) Animal colonies. Dowden, Hutchinson and Ross, Stroudsburg

    Google Scholar 

  • Smith LC (1988) The role of mesohyl cells in sponge allograft rejections. In: Grosberg RK, Hedgecock D, Nelson D (eds) Invertebrate historecognition. Plenum Press, New York

    Google Scholar 

  • Smith LC, Davidson EH (1992) The echinoid immune system and the phylogenetic occurrence of immune mechanisms in deuterostomes. Immunol Today 13: 356–361

    PubMed  CAS  Google Scholar 

  • Smith LC, Davidson EH (1993) The echinoid immune system revisited. Immunol Today 14: 91–94

    Google Scholar 

  • Smith LC, Hildemann WH (1984) Alloimmune memory is absent in Hymeniacidon snapium, a marine sponge. J Immunol 133: 2351–2355

    PubMed  CAS  Google Scholar 

  • Smith LC, Hildemann WH (1986a) Allograft rejection, autograft fusion and inflammatory responses to injury in Callyspongia diffusa (Porifera; Demospongia ). Proc R Soc Lond 226: 445–464

    PubMed  CAS  Google Scholar 

  • Smith LC, Hildemann WH (1986b) Allogeneic cell interactions during graft rejection in Callyspongia diffusa (Porifera; Demospongia); a study with monoclonal antibodies. Proc R Soc Lond 226: 465

    PubMed  CAS  Google Scholar 

  • Stoddart JA, Ayre DJ, Willis B, Hey ward AJ (1985) Self-recognition in sponges and corals. Evolution 39: 461–463

    Google Scholar 

  • Tanaka K (1973) Allogenic inhibition in a compound ascidian, Botryllus primigenus (Oka) II: Cellular and humoral responses in “nonfusion” reaction. Cell Immunol 7: 427–443

    PubMed  CAS  Google Scholar 

  • Tanaka K, Watanabe H (1973) Allogenic inhibition in a compound ascidian, Botryllus primigenus (Oka) I: Processes and features of “nonfusion” reaction. Cell Immunol 7: 410–426

    PubMed  CAS  Google Scholar 

  • Taneda Y, Watanabe H (1982a) Studies on colony specificity in the compound ascidian Botryllus primigenus (Oka) I. Initiation of “nonfusion” reaction with special reference to blood cell infiltration. Dev Comp Immunol 6: 43–52

    CAS  Google Scholar 

  • Taneda Y, Watanabe H (1982b) Studies on colony specificity in the compound ascidian, Botryllus primigenus (Oka) II. In vivo bioassay for analysing the mechanism of “nonfusion” reaction. Dev Comp Immunol 6: 243–252

    PubMed  CAS  Google Scholar 

  • Taneda Y, Watanabe H (1982c) Effects of X-irradiation on colony specificity in the compound ascidian, Botryllus primigenus ( Oka ). Dev Comp Immunol 6: 665–673

    CAS  Google Scholar 

  • Tardent P, Buhrer M (1982) Intraspecific tissue incompatibilities in the metagenetical Podocoryne carnea. In: Burger M, Weber R (eds) Embryonic development. AR Liss, New York

    Google Scholar 

  • Tardent P, Jauch U (1983) An ultrastructural study of homoclonal and heteroclonal encounters between stolons of Podocoryne carnea. Mech Aging Dev 21: 257–272

    PubMed  CAS  Google Scholar 

  • Theodor JL (1970) Distinction between self and non-self in lower invertebrates. Nature 227: 690–692

    PubMed  CAS  Google Scholar 

  • Theodor J (1971) Reconnaissance du “self” au reconnaissance des “non-self”. Arch Zool Exp Gen 112: 113–116

    Google Scholar 

  • Theodor J (1976) Histocompatibility in a natural population of gorgonians. Zool J Linn Soc 58: 173–176

    Google Scholar 

  • Thomas IG, Ratcliffe NA (1982) Integumental grafting and immunorecognition in insects. Dev Comp Immunol 6: 643–654

    PubMed  CAS  Google Scholar 

  • Toupin J, Lamoureux G (1976a) Coelomocytes of earthworms: the T-cell like rosette. Cell Immunol 26: 127–132

    PubMed  CAS  Google Scholar 

  • Toupin J, Lamoureux G (1976b) Coelomocytes of earthworms: phytohaemagglutinin responsiveness. In: Wright RK, Cooper EL (eds) Phylogeny of thymus and bone marrow bursa cells. Elsevier, Amsterdam

    Google Scholar 

  • Tripp MR (1970) Immunity in molluscs. Transplant Proc 2: 231–232

    PubMed  CAS  Google Scholar 

  • Valembois P (1974) Cellular aspects of graft rejection in earthworms and some other metazoans. Contemp Top Immunobiol 4: 121–126

    Google Scholar 

  • Van de Vyver G (1970) La non confluence intraspecifique chez les spongiaries et la notion d’individu. Ann Embryol Morphol 3: 251–262

    Google Scholar 

  • Van de Vyver G (1980) Second-set allograft rejection in two sponge species and the problem of alloimmune memory. In: Manning MJ (ed) Phylogeny of immunological memory. Elsevier, Amsterdam

    Google Scholar 

  • Van de Vyver G (1983) Absence of alloimmune memory in the freshwater sponge, Ephydatia fluviatilus. Dev Comp Immunol 7: 609–612

    Google Scholar 

  • Van de Vyver G (1988) Diversity of immune reaction in the sponge, Axinella polypoides. Proc 3rd Int Conf on Sponge biology. Smithsonian Inst Press, Washington, DC

    Google Scholar 

  • Van de Vyver G, Barbieux B (1983) Cellular aspects of allograft rejection in marine sponges of the genus Polymastia. J Exp Zool 227: 1–7

    PubMed  Google Scholar 

  • Van de Vyver G, Buscema M (1977) Phagocytic phenomena in different types of fresh-water sponge aggregates. In: Soloman JB, Horton JD (eds) Developmental immunobiology. Elsevier, Amsterdam

    Google Scholar 

  • Van de Vyver G, Toussaint D, Buscema M (1985) In situ manifestations of nonself recognition between encrusting sponges. J Morphol 183: 137–144

    Google Scholar 

  • Van de Vyver G, Holvoet S, Huysecom J (1986) Inhibition of allorecognition in the freshwater sponge, Ephydatia fluviatilis. Dev Comp Immunol 10: 429–435

    PubMed  Google Scholar 

  • Van de Vyver G, Holvoet S, Dewint P (1990) Variability of the immune response in freshwater sponges. J Exp Zool 254: 215–227

    Google Scholar 

  • Wardrop AB (1970) The structure and formation of the test of Pyura stolonifera. Protoplasma 70: 73–86

    Google Scholar 

  • Warr GW, Decker JM, Mandel DD, Hudson R, Marchalonis JJ (1977) Lymphocyte-like cells of the tunicate Pyura stolonifera: binding of lectins, morphological and functional studies. Aust J Exp Biol Med Sci. 55: 151–164

    PubMed  CAS  Google Scholar 

  • Watanabe H, Taneda Y (1982) Self or non-self recognition in compound ascidians. Am Zool 22: 775–782

    Google Scholar 

  • Wellington GM (1980) Reversal of digestive interactions between Pacific reef corals: mediation by sweeper tentacles. Oceologia 47: 340–354

    Google Scholar 

  • Zea S, Humphreys T (1985) Self recognition in the sponge Microciona prolifera examined by histocompatibility and cell aggregation experiments. Biol Bull 169: 538–544

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raftos, D.A. (1996). Histocompatibility Reactions in Invertebrates. In: Cooper, E.L. (eds) Invertebrate Immune Responses. Advances in Comparative and Environmental Physiology, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79847-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79847-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79849-8

  • Online ISBN: 978-3-642-79847-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics