Advertisement

Liposomes: Preparation and Membrane Protein Reconstitution

  • Maïté Paternostre
  • Michel Ollivon
  • Jacques Bolard
Part of the Springer Lab Manuals book series (SLM)

Abstract

Liposomes are hollow microspheres, their membrane is composed of one or several lipid bilayers and encapsulates a small volume of the medium in which they have been prepared. This morphology enables them to encapsulate water-soluble compounds in their internal volume and liposoluble ones in the bilayers.

Keywords

Lipid Concentration Mixed Micelle Liposome Formation Scintillation Vial Critical Micellar Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252PubMedCrossRefGoogle Scholar
  2. Barenholz Y, Amselem S, Lichtenberg D (1979) A new method for preparation of phospholipid vesicles (liposomes) — French press. FEBS Lett 99:210–213CrossRefGoogle Scholar
  3. Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 298:1015–1019PubMedCrossRefGoogle Scholar
  4. Blok MC, van Deenen LLM, de Gier J (1976) Effect of the gel to liquid crystalline phase transition on the osmotic behaviour of phosphatidylcholine liposomes. Biochim Biophys Acta 433:1–12PubMedCrossRefGoogle Scholar
  5. Bruner J, Srabal P, Hauser H (1976) Simple bilayer vesicles prepared without sonication: physico-chemical properties. Biochim Biophys Acta 455:322–331CrossRefGoogle Scholar
  6. Cullis PR, and Hope MJ (1985) Physical properties and functional roles of lipids in membranes. In: Vance DE, Vance JE (eds) “Biochemistry of lipids and membranes”. Benjamin/Cumming Menlo Park, California, pp 25–72Google Scholar
  7. Deamer D, Bangham AD (1976) Large volume liposomes by an ether vaporization method. Biochim Biophys Acta 443:629–634PubMedGoogle Scholar
  8. Delattre J (1993) Liposomes et barrières endothéliales. In: Delattre J et al. (eds) Les liposomes: aspects technologiques et pharmacologiques. INSERM Paris, pp 167–176Google Scholar
  9. Enoch HG, Strittmater P (1979) Formation and properties of 1000-Å-diam-eter, single-bilayer phospholipid vesicles. Proc Natl Acad Sci USA 76:145–149PubMedCrossRefGoogle Scholar
  10. Fettiplace R, Haydon DA (1980) Water permeability of lipid membranes. Physiol Rev 60:510–550PubMedGoogle Scholar
  11. Grift M, Crommelin DJA (1993) Chemical stability of liposomes: Implications for their physical stability Chem Phys Lipids 64:3–18CrossRefGoogle Scholar
  12. Hamilton RL, Guo L (1984) French pressure cell liposomes: preparation, properties and potential. In: Liposome Technology, CRC Press, Boca-Raton, pp 37–50 (Volume I)Google Scholar
  13. Holloway PW (1973) Simple procedure for removal of Triton X-100 from protein samples. Anal Biochem 53:304–308PubMedCrossRefGoogle Scholar
  14. Hope MJ, Bally MB, Mayer LD, Webb G, Cullis PR (1985) Production of large unilamellar vesicles by a rapid extrusion procedure. Characterisation of size distribution, trapped volume and ability to maintain a membrane potential. Biochim Biophys Acta 815:55–65Google Scholar
  15. Hope MJ, Bally MB, Mayer LD, Janoff AS, Cullis PR (1986) Generation of multilamellar and unilamellar phospholipid vesicles. Chem Phys Lipids 40:89–107CrossRefGoogle Scholar
  16. Horigome T, Sugano H (1983) A rapid method for removing of detergents from protein solution. Anal Biochem 130:393–396PubMedCrossRefGoogle Scholar
  17. Huang C (1969) Studies of phosphatidylcholine vesicles: formation and physical characteristics. Biochemistry 8:344–349PubMedCrossRefGoogle Scholar
  18. Ipsen JH, Mouritsen OG, Bloom M (1990) Relationships between lipid membrane area, hydrophobic thickness and acyl-chain orientational order: the effects of cholesterol. Biophys J 57:405–412PubMedCrossRefGoogle Scholar
  19. Kagawa T, Racker E (1971) Partial resolution of the enzymes catalyzing oxidative phosphorylation. J Biol Chem 246:5477–5487Google Scholar
  20. Kashara M, Hinkle PC (1977) Reconstitution and purification of the D-Glucose transporter from human erythrocytes. J Biol Chem 252:7384–7390Google Scholar
  21. Kates M (1986) Techniques of Lipidology: Isolation, analysis and identification of lipids. In: Burdon RH, van Knippenberg PH (eds) Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 3 Part II. (2nd edn), Elsevier, AmsterdamGoogle Scholar
  22. Kirby C and Gregoriadis G (1984) Dehydratation-rehydratation vesicles: a simple method for high yield drug entrapment in liposomes. Biotechnology 12:979–984Google Scholar
  23. Kragh-Hansen U, Le Maire M, Noel JP, Gulik-Krzywicki T, Moller J (1993) Transitional steps in the solubilization of protein-containing membranes and liposomes by non-ionic detergent. Biochemistry 32:1648–1658PubMedCrossRefGoogle Scholar
  24. Kremer JMH, Esker MW, Pathmamanoharan C, Wieresema PH (1977) Vesicles of variable diameter prepared by a modified injection method. Biochemistry 16:3932–3935PubMedCrossRefGoogle Scholar
  25. Lecuyer H, Dervichian DG (1969) Structure of aqueous mixtures of lecithin and cholesterol. J Mol Biol 45:39–57PubMedCrossRefGoogle Scholar
  26. Lelkes P.I (1984) The use of French pressed vesicles for efficient incorporation of bioactive macromolecules and as drug carriers in vitro and in vivo. In: Gregoriadis G (ed) Liposome Technology, CRC Press, Boca-Raton, vol. 1 pp 51–65Google Scholar
  27. Lesieur S, Grabielle-Madelmont C, Paternostre M, Moreau JM, Handjani-Vila RM, Ollivon M (1990) Action of Octyl glucoside on non-ionic monoalkyl amphiphile-cholesterol vesicles: study of the solubilization mechanism. Chem Phys Lipids 56:109–121CrossRefGoogle Scholar
  28. Lesieur S, Grabielle-Madelmont C, Paternostre M, Ollivon M (1991) Size analysis and stability of lipid vesicles by high performance gel exclusion chromatography, turbidity and dynamic light scattering. Anal Biochem 192:334–343PubMedCrossRefGoogle Scholar
  29. Lesieur S, Grabielle-Madelmont C, Paternostre M, Ollivon M (1993) Study of size distribution and stability by high performance gel exclusion chromatography. Chem Phys Lipids 94:57–82CrossRefGoogle Scholar
  30. Levy D, Bluzat A, Seigneuret M, Rigaud JL (1990) A systematic study of liposome and proteoliposome reconstitution involving Bio-Bead-medi-ated Triton X-100 removal. Biochim Biophys Acta 1025:179–190PubMedCrossRefGoogle Scholar
  31. MacDonald RI, MacDonald RC (1983) Lipid mixing during freeze-thawing of liposomal membranes as monitored by fluorescence energy transfer. Biochim Biophys Acta 735:243–251PubMedCrossRefGoogle Scholar
  32. Mayhew E, Lazo R, Vail WJ, King J, Green AM (1984) Characterisation of liposomes prepared using microemulsifier. Biochim Biophys Acta 775:169–174PubMedCrossRefGoogle Scholar
  33. Milsman MH, Schwendener RA, Weder HG (1978) The preparation of large single bilayer liposomes by a fast and controlled dialysis. Biochim Biophys Acta 512:147–155CrossRefGoogle Scholar
  34. Mimms LT, Zampighi G, Nosaki Y, Tanford C, Reynolds JA (1981) Phospholipid vesicles formation and transmembrane protein incorporation using Octyl glucoside. Biochemistry 20:833–840PubMedCrossRefGoogle Scholar
  35. Moriyama R, Nakashima H, Makimo S, Koga S (1984) A study on the separation of reconstituted proteoliposomes and unincorporated membrane proteins by use of hydrophobic affinity gels with special reference to band 3 from bovine erythrocytes membranes. Anal Biochem 139:292–297PubMedCrossRefGoogle Scholar
  36. Ollivon M, Walter A, Blumenthal R (1986) Sizing and separation of liposomes, biological vesicles and viruses by HPLC. Anal Biochem 152:262–274PubMedCrossRefGoogle Scholar
  37. Ollivon M, Eidelman O, Blumenthal R, Walter A (1988) Micelle-vesicle transition of Egg Phosphatidylcholine and Octyl glucoside. Biochemistry 27:1695–1703PubMedCrossRefGoogle Scholar
  38. Olson F, Hunt T, Szoka FC, Vail WJ, Papahadjopoulos D (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta 557:9–23PubMedCrossRefGoogle Scholar
  39. Oshawa T, Miura H, Harada K (1984) A novel method for preparing liposomes with a high capacity to encapsulate proteineous drugs. Chem Pharm Bull 32:2442–2445CrossRefGoogle Scholar
  40. Papahadjopoulos D, Kimelberg HK (1974) Phospholipid vesicles (liposomes) as models for biological membranes: their properties and interactions with cholesterol and proteins. In: Davison SG (ed) Progress in Surface Science. Pergamon Press, OxfordGoogle Scholar
  41. Papahadjopoulos D, Miller N (1967) Phospholipid model membranes. I Structural characteristics of hydrated liquid crystals. Biochim Biophys Acta 135:625–638Google Scholar
  42. Papahadjopoulos D, Vail WJ, Newton C et al. (1977) Studies on membrane fusion. III The role of calcium-induced phase changes. Biochim Biophys Acta 465:579–598PubMedCrossRefGoogle Scholar
  43. Paternostre M, Roux M, Rigaud JL (1988) Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergent 1. Solubilization of large unilamellar liposomes (prepared by reverse phase evaporation) by Triton X-100, Octyl glucoside and sodium cholate. Biochemistry 27:2668–2677PubMedCrossRefGoogle Scholar
  44. Phillipot JR, Mustaftschiev S, Liautard JP (1983) A very mild method allowing the encapsulation of macromolecules into very large (1000nm) unilamellar liposomes. Biochim Biophys Acta 734:137–143CrossRefGoogle Scholar
  45. Phillipot JR, Mustaftschiev S, Liautard JP (1985) Extemporaneous preparation of large unilamellar liposomes. Biochim Biophys Acta 821:79–84CrossRefGoogle Scholar
  46. Phillips MC (1972) The physical state of phospholipids and cholesterol in monolayers, bilayers and membranes. In: Danielli JF, Rosenberg MD, Cadenhead DA (eds) Progress in surface and membrane science, Vol 5. Academic Press, New YorkGoogle Scholar
  47. Pick U (1981) Liposomes with a large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures. Arch Biochem Biophys 212:186–194PubMedCrossRefGoogle Scholar
  48. Rhoden V, Golden SM (1979) Formation of unilamellar lipid vesicles of controllable dimensions by detergent dialysis. Biochemistry 18:4173–4176PubMedCrossRefGoogle Scholar
  49. Rigaud JL, Bluzat A, Buschlen S (1983) Incorporation of bacteriorhodopsin into large unilamellar liposomes by reverse phase evaporation. Biochem Biophys Res Commun 111:373–382PubMedCrossRefGoogle Scholar
  50. Rigaud JL, Paternostre M, Bluzat A (1988) Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergent 2. Incorporation of light driven proton pump Bacteriorhodopsin. Biochemistry 27:2677–2688PubMedCrossRefGoogle Scholar
  51. Saunders L, Perrin J, Gammack DB (1962) Aqueous dispersion of phospholipids by ultrasonic radiations. J Pharm Pharmacol 14:567–572PubMedCrossRefGoogle Scholar
  52. Schwendener RA, Asanger M, Weder HG (1981) n-Alkyl-glucoside as detergents for the preparation of highly homogeneous bilayer liposomes of variable sizes (60–240 nm) applying denned rates of detergent removal by dialysis. Biochem Biophys Res Commun 100:1055–1062Google Scholar
  53. Seras M, Handjani-Vila RM, Ollivon M, Lesieur S (1992) Kinetic aspects of the solubilization of non-ionic monoalkyl amphiphile-cholesterol vesicles by Octyl-glucoside. Chem Phys Lipids 63:1–14CrossRefGoogle Scholar
  54. Seras M, Ollivon M, Edwards K, Lesieur S (1993) Reconstitution of non-ionic monoalkyl amphiphile-cholesterol vesicles by dilution of lipids-octylglucoside mixed micelles. Chem Phys Lipids 66:93–109PubMedCrossRefGoogle Scholar
  55. Shew RL, Deamer DW (1985) A novel method for encapsulation of macro-molecules in liposomes. Biochim Biophys Acta 816:1–8PubMedCrossRefGoogle Scholar
  56. Szoka FC, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse phase evaporation. Proc Natl Acad Sci USA 75:4195–4198CrossRefGoogle Scholar
  57. Szoka FC, Olson F, Health T, Vail W, Mayhew E, Papahadjopoulos D (1980) Preparation of unilamellar liposomes of intermediate size (0.1–0.2 (μm) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes. Biochim Biophys Acta 601:559–571PubMedCrossRefGoogle Scholar
  58. Vanlerberghe G, Handjani-Vila RM, Ribier A (1978) Les “niosomes”, une nouvelle famille de vésicules a base d’amphiphiles non ioniques. Colloques nationaux du CNRS, Physico-chimie des composés amphiphiles, Bordeaux Lac, 27–30 Juin 1978, 304Google Scholar
  59. Walter A, Lesieur S, Blumenthal R, Ollivon M (1993) Size characterisation of liposomes by HPLC. In: Gregoriadis G (ed) Liposome technology, 2nd edn, Vol. I. CRC Press, Boca Raton, pp 271–289Google Scholar
  60. Welti R, Glaser M (1994) Lipid domains in model and biological membranes. Chem Phys Lipids 73:121–137PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Maïté Paternostre
    • 1
  • Michel Ollivon
    • 1
  • Jacques Bolard
    • 2
  1. 1.Equipe Physicochimie des Systemes Polyphases, URA CNRS 1218Universite Paris SudChatenay-MalabryFrance
  2. 2.Laboratoire de Physique et Chimie Biomoleculaires, URA CNRS 198Universite Pierre et Marie CurieParis Cedex 0.5France

Personalised recommendations