Isolation of Pure Membrane Fractions for Lipid Analysis

  • L. A. Okorokov
  • R. Prasad
  • R. A. Zvyagilskaya
  • L. P. Lichko
  • T. V. Kulakovskaya
  • N. P. Yurina
  • M. S. Odintsova
Part of the Springer Lab Manuals book series (SLM)

Abstract

In order to analyse the lipid composition of different membranes, it is essential that one must be able to isolate pure membranes. As an example, this chapter describes some well-tried protocols for the isolation of different membranes from yeast cells and chloroplast membrane from plant sources.

Keywords

Permeability EDTA Vanadate Fractionation Cytosol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dufourc JP, Goffeau A (1978) Solubilization by lysolecithin and purification of the plasma membrane ATPase of the yeast Schizosaccharomyces pombe. J Biol Chem 253:7026–7027Google Scholar
  2. Duran A, Bowers B, Cabib E (1975) Chitin synthetase zymogen is attached to the plasma membrane. Proc Natl Acad Sci USA 72:3952–3955PubMedCrossRefGoogle Scholar
  3. Franzusoff A and Cirillo VP (1983) Glucose transport activity in isolated plasma membrane vesicles from Saccharomyces cerevisiae. J Biol Chem 258:3608–3615PubMedGoogle Scholar
  4. Fuhrmann GF, Boehm C, Theuvenet APR (1976) Sugar transport and potassium permeability in yeast plasma membrane vesicles. Biochim Biophys Acta 433:583–596PubMedCrossRefGoogle Scholar
  5. Indge KI (1968) Metabolic lysis of yeast protoplasts. J Gen Microbiol 51: 433–440PubMedCrossRefGoogle Scholar
  6. Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 25:451–460Google Scholar
  7. Okorokov LA (1994) Several compartments of Saccharomyces cerevisiae are equipped with Ca2+-ATPase(s). FEMS Microbiol Lett 117:311–318PubMedCrossRefGoogle Scholar
  8. Okorokov LA, Petrov VV (1986) Isolation of plasma membrane vesicles from the yeast Saccharomyces carlsbergensis suitable for solute transport studies. Biol Membr (USSR) 3:549–556Google Scholar
  9. Okorokov LA, Kulakovskaya TV, Kulaev IS (1982) Solubilization and partial purification of vacuolar ATPase of yeast Saccharomyces carlsbergensis. FEBS Lett 145:160–162PubMedCrossRefGoogle Scholar
  10. Palmer JD (1986) Isolation and structural analysis of chloroplast DNA. Methods Enzymol 118:167–186CrossRefGoogle Scholar
  11. Petrov and Okorokov (1992) Mercaptoethanol and Dithiothreitol decrease the difference of electrochemical proton potentials across the yeast plasma and vacuolar membranes and activate their H+-ATPases. Yeast 8:589–598PubMedCrossRefGoogle Scholar
  12. Roberts CJ, Raymond CK, Yamashiro CT, Stevens TH (1991) Methods for studying the yeast vacuoles. Methods Enzymol 194:644–661PubMedCrossRefGoogle Scholar
  13. Scarborough G (1988) Large scale purification of plasma membrane H+-ATPase from a cell wall-less mutant of Neurospora crassa. Methods Enzymol 157:574–579PubMedCrossRefGoogle Scholar
  14. Serrano R (1983) In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett 156:11–14PubMedCrossRefGoogle Scholar
  15. Serrano R (1991) Transport across yeast vacuolar and plasma membranes. The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics. I:523–585. Cold Spring Harbor Laboratory PressGoogle Scholar
  16. Yurina NP, Belkina GG, Piletskaya, Karapetyan NV, Odintsova MS (1991) Isolation and characterization of chloroplast DNA of Azolla pinnata. Prikl Biokhim Mikrobiol (Russian) 29:299–307Google Scholar
  17. Zinser E and Daum G (1995) Isolation and biochemical characterization of organelles from yeast, Saccharomyces cerevisiae Yeast 11:493–536PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • L. A. Okorokov
    • 1
    • 2
  • R. Prasad
    • 3
  • R. A. Zvyagilskaya
    • 4
  • L. P. Lichko
    • 1
  • T. V. Kulakovskaya
    • 1
  • N. P. Yurina
    • 4
  • M. S. Odintsova
    • 4
  1. 1.Institute of Biochemistry and Physiology of MicroorganismRussian Academy of SciencesPushchinoRussian Federation
  2. 2.Instituto de Ciêcias Biomédicas, Departamento de Bioquimica MédicaUniversidade Federal do Rio de JaneiroBrasil
  3. 3.School of Life SciencesJawahailal Nehrs UniversityNew DelhiIndia
  4. 4.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations