Local Geoid Accuracies from Different Kinds of Data

  • A. Albertella
  • F. Sacerdote
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 114)

Abstract

Evaluation techniques related to the theory of boundary-value problems with stochastic boundary conditions described by Wiener measures are used to compare the expected accuracies of the geoid obtained from gravity anomalies and from deflections of the vertical, with the current density and precision of individual measurements. Analytical computations are carried out under very simplified assumptions on the distribution of data, initially making the hypothesis of a global data coverage; an outlook at a local computation technique using plane approximation shows that the order of magnitude of the comparative results is essentially unchanged. In both cases, with the current measurement accuracies and densities for deflections of the vertical and gravity anomalies, the latter are shown to yield better accuracies in geoid undulation estimates.

Keywords

Covariance Geophysics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barzaghi, R., G. Bottom (1993) - Fast Collocation, Bull. Geod., 67, 119–126.CrossRefGoogle Scholar
  2. Barzaghi, R., A.Fermi, S.Tarantola, F.Sansö (1993) - Spectral Techniques in Inverse Stokes and Overdetermined Problems, Surveys in Geophysics, 14, 461–475.CrossRefGoogle Scholar
  3. Elmiger, H., W. Gurtner (1983) - Astrogeodätische Geoidbestimmung und Lotab-weichungsinterpolation in der Schweiz, ETH Zürich, Inst, für Geod. und Photogr., Bericht Nr. 74.Google Scholar
  4. Kearsley, A.H.W., M.G.Sideris, J.Krinski, R.Forsberg, K.P.Schwarz (1985) - White Sands Revisited. A Comparison of Techniques to Predict Deflections of the Vertical, UCSE Reports, 30007.Google Scholar
  5. Moritz, H. (1983) - Local Geoid Determination in Mountain Regions, OSU Reports of the Department of Geodetic Science and Surveying, The Ohio State University, 352.Google Scholar
  6. Sansò, F. (1988) - The Wiener Integral and the Overdetermined Boundary Value Problems of Physical Geodesy, Man.Geod., 13, 75–98.Google Scholar
  7. Schwarz, K.P., M.G.Sideris and R.Forsberg (1990) - The use of FFT techniques in Physical Geodesy, Geophys.J.Int, 100, 485–514.CrossRefGoogle Scholar
  8. Sideris, M.G., R.Forsberg (1991) - Review of Geoid Prediction Methods in Mountainous Regions, in Determination of the Geoid, Present and Future (R.H.Rapp and F.Sanso, eds.), IAG Symposia 106, 51–62, Springer-Verlag.CrossRefGoogle Scholar
  9. Sünkel, H., N.Bartelme, H.Fuchs, M.Hanafy, W.D.Schuh, M.Wieser (1987) - The Gravity Field in Austria, Proc. of the IAG Symposia, Vancouver, 475–503.Google Scholar
  10. Tscherning, C.C. (1975) - Application of Collocation for the Planning of Gravity Surveys, Bull. Geod., n. 116, 183–198.CrossRefGoogle Scholar
  11. Tziavos, I.N., M.G.Sideris and K.P.Schwarz (1992) - A Study of the Contributions of Various Gravimetric Data Types on the estimation of Gravity Field Parameters in the Mountains, JGR, 97, B6, 8843–8852.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • A. Albertella
    • 1
  • F. Sacerdote
    • 1
  1. 1.Dipartimento I.I.A.R. - Politecnico di MilanoItaly

Personalised recommendations