Skip to main content

Mathematical Statistics for Spatial Data; The Use of Geostatistics for Geodetic Purposes

  • Conference paper
Geodetic Theory Today

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 114))

Abstract

In geodesy long experience exists in using procedures to predict the earth’s gravitational field at unvisited locations. A well known quantitative approach, least-squares collocation, has been proposed (Krarup, 1969) and has been used extensively in the past (see Moritz 1980a, which contains a detailed list of references). Least-squares collocation provides a linear unbiased predictor to predict e.g. the geoid on the basis of a number of observations on gravity anomalies. Fundamental aspects of Hilbert spaces and of approximation theory have been formulated (Meissl, 1976; Tscherning, 1978; Dermanis, 1977). Recent research has focused on application of the theory in many different areas (Haagmans and Van Gelderen, 1991) as well as on problems of taking the spherical shape of the earth into account (Schaffrin, 1992). Quite remarkably, a parallel rise may be observed in developing and using geostatistical theory, in particular inspired by the French work in the nineteen seventies. (Matheron, 1973; Delfiner, 1976; Journel and Huijbregts, 1978) and continuing in the nineties (Cressie, 1992). Geostatistics also provides a linear unbiased predictor of any spatial phenomenon, taking the spatial dependencies into account. A typical example is given on the land quality moisture deficit (Stein et al., 1991a), which is correlated with the mean highest groundwater level, leading to the use of universal cokriging as an appropriate prediction technique (Stein and Corsten, 1991). Modern approaches apply geostatistical procedures as well for geodetic purposes, using either generalized covariance functions (Blais, 1984) or anisotropy (Hansen, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, H. (1974). A new look at the statistical model identification, IEEE Trans. Automat. Control, AC-19, 716–723.

    Article  Google Scholar 

  • Blais, J.A.R. (1982). Synthesis of kriging estimation methods. Manuscripta Geodetica 7, 325–352.

    Google Scholar 

  • Blais, J.A.R. (1984). Generalized covariance functions and their applications in estimation, Manuscripta geodetica 9, 307–322.

    Google Scholar 

  • Christakos, G. (1984). On the problem of permissible covariance and variogram models. Water Resour. Res. 20, 251–265.

    Article  Google Scholar 

  • Christakos, G. (1992). Random field models for earth sciences. Academic Press, New York.

    Google Scholar 

  • Corsten, L.C.A. (1989). Interpolation and optimal linear prediction. Statistica Neerlandica 43, 69–84.

    Article  Google Scholar 

  • Cressie, N.A.C. (1992). Statistics for spatial data. Wiley, New York.

    Google Scholar 

  • Delfiner, P. (1976). Linear estimation of nonstationary spatial phenomena, Advanced Geostatistics in the Mining Industry, M. Guarascio et al. (eds.), Reidel, Dordrecht, 49–68.

    Chapter  Google Scholar 

  • Dermanis, A. (1977). Geodetic linear estimation techniques and the norm choice problem, Manuscripta Geodetica 2, 15–97.

    Google Scholar 

  • Dermanis, A. (1984). Kriging and collocation - a comparison, Manuscripta Geodetica 9, 159–167.

    Google Scholar 

  • Deutsch, C.V. and Journel, A.G. (1992). GSLIB: Geostatistical Software Library and User’s Guide. Oxford University Press, New York.

    Google Scholar 

  • Gel’fand, I.M. and Vilenkin, N. (1964) Generalized Functions 4, Academic Press, New York.

    Google Scholar 

  • Haagmans, R.H.N., and Van Gelderen, M. (1991). Error-variances-covariances of GEM-T1: their characteristics and implications in geoid computations, J. Geoph. Res. 96, 20011–20022.

    Article  Google Scholar 

  • Hansen, R.O. (1993). Interpretive gridding by anisotropic kriging, Geophysics 58, 1491–1497.

    Article  Google Scholar 

  • Hardy, R.L. (1984). Kriging, collocation and biharmonic models for application in the earth sciences (what’s the difference?) Proceedings of the American Congress on Surveying and Mapping, 44th annual meeting.

    Google Scholar 

  • Ito, K. (1953). Stationary random distributions, Mem. Coll. Sci. Univ. Kyoto 28, 209–233.

    Google Scholar 

  • Journel, A.G. and Huijbregts, C.J. (1978). Mining geostatistics, Academic Press, London.

    Google Scholar 

  • Kitanidis, P.K. (1983). Statistical estimation of polynomial generalized covariance functions and hydrologic applications, Water Resour. Res. 19, 901–921.

    Google Scholar 

  • Krarup, T. (1969). A contribution to the mathematical foundation of physical geodesy, Puhl. 44, Dan. Geod. Inst., Copenhagen.

    Google Scholar 

  • Matheron, G. (1973). The intrinsic random functions and their applications, Adv. Appl. Prob. 5, 439–468.

    Article  Google Scholar 

  • Meier, S. and Keller, W. (1990). Geostatistik: EinfĂ¼hrung in die Theorie der Zufallsprozesse. Springer, Berlin.

    Book  Google Scholar 

  • Meissl, H. (1976). Hilbert spaces and their application to geodetic least squares problems, Boll. Geod. Sci. Affini 35, 49–80.

    Google Scholar 

  • Moritz, H. (1973). Least-squares collocation. Publ. Deut. Geod. Komm., A, 75.

    Google Scholar 

  • Moritz, H. (1980a). Advanced physical geodesy. Herbert Wichmann Verlag, Karlsruhe.

    Google Scholar 

  • Moritz, H. (1980b). Geodetic Reference System 1980, Bulletin Geodesique 54, 395–405.

    Article  Google Scholar 

  • Schaffrin, B. (1992). Biased kriging on the sphere? Geostatistics Troia ′92, A. Soares (ed.), Kluwer, Dordrecht.

    Google Scholar 

  • Stein, A. and Corsten, L.C.A. (1991). Universal kriging and cokriging as a regression procedure, Biometrics 47, 575–587.

    Article  Google Scholar 

  • Stein, A., Staritsky, I.G., Bouma, J., Van Eijnsbergen, A.C., and Bregt, A.K. (1991a). Simulation of moisture deficits and interpolation by universal cokriging, Water Resour. Res. 27, 1963–1973.

    Article  Google Scholar 

  • Stein, A., Van Eijnsbergen, A.C., and Barendregt, L.G. (1991b). Cokriging non-stationary data, Mathematical Geology 23, 703–719.

    Article  Google Scholar 

  • Torge, W., Weber, G., and Wenzel, H.G. (1983). 6′ x 10′ free air gravity anomalies of Europe including marine areas. Paper presented to the XVIII IUGG general assembly, Hamburg, 75–27 August 1983.

    Google Scholar 

  • Tscherning, C.C. (1978). Introduction to functional analysis with a view to its applications in approximation theory, Approximation methods in geodesy, H. Moritz and H. SĂ¼nkel (eds.), Herbert Wichmann Verlag, Karlsruhe.

    Google Scholar 

  • Tscherning, C.C., and Rapp, R.H. (1974). Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models. Rep. 208, Dep. ofGeod. Sci., Ohio State Univ., Columbus.

    Google Scholar 

  • Weber, G. (1984). Hochauflösende mittlere Freiluftanomalien und gravimetrische Lotabweichungen fĂ¼r Europa, Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover, nr. 135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stein, A. (1995). Mathematical Statistics for Spatial Data; The Use of Geostatistics for Geodetic Purposes. In: SansĂ², F. (eds) Geodetic Theory Today. International Association of Geodesy Symposia, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79824-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79824-5_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59421-5

  • Online ISBN: 978-3-642-79824-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics