Solving the Inverse Gravimetric Problem: On the Benefit of Wavelets

  • Ludwig Ballani
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 114)

Abstract

Inverse problems often consist in finding a physical quantity (density, diffusivity, conductivity) defined in a certain domain (‘support’). The determination of a solution always requires a mathematical modelling of the corresponding (source or parameter) functions and domains involved. This process can be understood as a certain manner of probing or sounding. In this meaning ‘sounding’ can be directed to the approximation of one or several function values, e.g. by means of the known Backus-Gilbert method, but it is also done by the decomposition procedures to be considered here.

Keywords

Convolution Geophysics Verse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R.A. (1975): Sobolev Spaces. Academic Press, New YorkGoogle Scholar
  2. Anger, G. (1990): Inverse Problems in Differential Equations. Akademie Verlag, Berlin, and Plenum Press, LondonGoogle Scholar
  3. Auscher, P. (1992): Wavelets with Boundary Conditions on the Interval, in: Wavelets - A Tutorial in Theory and Applications, Chui, C. K.(ed.), Academic Press, Boston, pp. 217–236Google Scholar
  4. Ballani, L., Stromeyer, D. and Barthelmes, F. (1993a): Decomposition Principles for Linear Source Problems, in: Inverse Problems: Principles and Applications in Geophysics, Technology, and Medicine, Anger, G. et al (eds.), (Mathematical Research, Vol. 74 ), Akademie Verlag, Berlin, pp. 45–59Google Scholar
  5. Ballani, L., Engels, J. and Grafarend, E. (1993b): Global base functions for the mass density in the interior of a massive body (Earth). Manuscr. Geod., Vol. 18, pp. 99–114Google Scholar
  6. Barthelmes, F., Ballani, L. and Klees, R. (1994): On the Application of Wavelets in Geodesy, (these proceedings )Google Scholar
  7. Batha, L., Benciolini, B. and Zatelli, P. (1994): Geodetic applications of wavelets: proposals and simple numerical experiments, (these proceedings)Google Scholar
  8. Beylkin, G., Coifman, R. R. and Rokhlin, V. (1991): Fast Wavelet Transforms and Numerical Algorithms I. Comm. on Pure and Applied Math., Vol. 44, pp. 141–183CrossRefGoogle Scholar
  9. Beylkin, G. (1992): On the Representation of Operators in Bases of Compactly Supported Wavelets. SIAM J. Numer. Anal., Vol. 6, pp. 1716–1740CrossRefGoogle Scholar
  10. Chui, C.K.(ed.) (1992): Wavelets - A Tutorial in Theory and Applications. (Wavelet Analysis and Its Applications Series, Vol. 2 ), Academic Press, BostonGoogle Scholar
  11. Cohen, A. and Daubechies, I. (1993): Non-separable bidimensional wavelet bases. Revista Mat. Iberoamericana, Vol. 9, pp. 51–137CrossRefGoogle Scholar
  12. Daubechies, I. (1992): Ten Lectures on Wavelets. (CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61 ), SIAM Press, PhiladelphiaCrossRefGoogle Scholar
  13. Dicken, V. (1994): Die Behandlung Inverser Probleme durch Wavelet-Zerlegungen. Fachbereich Mathematik, Philipps-Universität Marburg, Diploma ThesesGoogle Scholar
  14. Donoho, D. L. (1992): Nonlinear Solution of Linear Inverse Problems by Wavelet -Vaguelette Decomposition. Tech. Rep. 403, Stat. Dep., Stanford Univ., 46 p.Google Scholar
  15. Freeden, W. and Schreiner, M. (1993): Nonorthogonal Expansions on the Sphere. Univ. of Kaiserslautern, (preprint, to appear in Math. Meth. in the Appl. Sci. )Google Scholar
  16. Freeden, W. and Schreiner, M. (1994): New Wavelet Methods for Approximating Harmonic Functions, (these proceedings)Google Scholar
  17. Freeden, W. and Windheuser, U. (1994): Earth’s Gravitational Potential and It’s MRA Approximation by Harmonic Singular Integrals, (to appear in Zeitschr. Angew. Math. Mech. (ZAMM))Google Scholar
  18. Jaffard, S. and Meyer, Y. (1989): Bases d’Ondelettes dans des Ouverts de IRn. Journ. de Math. Pures et Appl. Vol. 68, pp. 95–108Google Scholar
  19. Jaffard, S. and Laurengot, P. (1992): Orthonormal Wavelets, Analysis of Operators, and Applications to Numerical Analysis, in: Wavelets - A Tutorial in Theory and Applications. Chui, C.K. (ed.), Academic Press, Boston, pp. 543–601Google Scholar
  20. Jawerth, B. and Sweldens, W. (1993): An Overview of Wavelet Based Multiresolution Analyses, (submitted to SIAM Review)Google Scholar
  21. Louis, A. K. (1993): A Wavelet Approach to Identification Problems. University of Saarbrücken (preprint)Google Scholar
  22. Maaß, P. (1992): Families of orthogonal 2D-wavelets with compact support. University of Saarbrücken (preprint)Google Scholar
  23. Maaß, P. (1994): Wavelet-projection methods for inverse problems. University of Potsdam (preprint)Google Scholar
  24. Meyer, Y. (1992): Wavelets and Operators. (Cambridge Studies in Advanced Mathematics, Vol. 37 ) Cambridge University Press, CambridgeGoogle Scholar
  25. Sickel, W. (1991): A remark on orthonormal bases of compactly supported wavelets in Triebel-Lizorkin spaces. The case 0 < p, q <∞., Arch. Math., Vol. 57, pp. 281–289Google Scholar
  26. Strichartz, R. S. (1993): How to make wavelets. Amer. Math. Monthly, Vol. 100, pp. 539–556CrossRefGoogle Scholar
  27. Weck, N. (1972): Zwei inverse Probleme in der Potentialtheorie. Mitt. Inst. Theor. Geod. Univ. Bonn, Nr. 4, pp. 27–36Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Ludwig Ballani
    • 1
  1. 1.Department “Recent Kinematics and Dynamics of the Earth”GeoForschungsZentrum Potsdam (GFZ)PotsdamGermany

Personalised recommendations