The Role of CD4 in HIV Envelope-Mediated Pathogenesis

  • R. F. Siliciano
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 205)

Abstract

The high affinity interaction between the envelope (env)glycoprotein of HIV-1 and the cell surface glycoprotein CD4 is a central molecular event in AIDS pathogenesis. This interaction not only provides the molecular basis for the tropism of HIV-1 for CD4+ cells, but, as is described in the present chapter, also represents a critical step in several cpmplex pathogenic mechanisms that contribute to the development of immunodeficiency in HIV-1-infected individuals.

Keywords

Toxicity Tyrosine Influenza Oligomer Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amadori A, de Silvestro G, Zamarchi R, Veronese ML, Massa MR, Schiavo G, Panozzo M, De Rosse A, Ometto L, Mous J, Barelli A, Borri A, Salmaso L, Chieco-Bianchi L (1992) CD4 epitope masking by gp120/anti-gp120 antibody complexes. A potential mechanism for CD4+ cell function down-regulation in AIDS patients. J Immunol 148: 2709–2716PubMedGoogle Scholar
  2. Asjo B, Ivhed I, Gidlund M, Fuerstenberg S, Fenyo EM, Nilsson K, Wigzell H (1987) Susceptibility to infection by the human immunodeficiency virus (HIV) correlates with T4 expression in a parental monocytoid cell line and its subclones. Virology 157: 359–365PubMedCrossRefGoogle Scholar
  3. Banda NK, Bernier J, Kurahara DK, Kurrie R, Haigwood N, Sekaly R-P, Finkel TH (1992) Cross-linking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis. J Exp Med 176: 1099–1106PubMedCrossRefGoogle Scholar
  4. Bank I, Chess L (1985) Perturbation of the T4 molecule transmits a negative signal to T cells. J Exp Med 162: 1294–1303PubMedCrossRefGoogle Scholar
  5. Bergeron L, Sodroski J (1992) Dissociation of unintegrated viral DNA accumulation from single-cell lysis induced by human immunodeficiency virus type 1. J Virol 66: 5777–5787PubMedGoogle Scholar
  6. Boldt-Houle DM, Rinaldo CR Jr, Ehrlich GD (1993) Random depletion of T cells that bear specific T cell receptor V beta sequences in AIDS patients. J Leukoc Biol 54: 486–491PubMedGoogle Scholar
  7. Bolognesi DP, Langlois AJ, Schafer W (1975) Polypeptides of mammalian oncornaviruses IV. Structural components of murine leukemia virus released as soluble antigens in cell culture. Virology 68: 550–555PubMedCrossRefGoogle Scholar
  8. Boyer V, Smith LR, Ferre F, Pezzoli P, Trauger RJ, Jensen FC, Carlo DJ (1993) T cell receptor V beta repertoire in HIV-infection individuals: lack of evidence for selective V beta deletion. Clin Exp Immunol 92: 437–441PubMedCrossRefGoogle Scholar
  9. Bozzette SA, McCutchan JA, Spector SA, Wright B, Richman DD (1993) A cross-sectional comparison of persons with syncytium- and non-syncytium-inducing human immunodeficiency virus. J Infect Dis 168: 1374–1379PubMedCrossRefGoogle Scholar
  10. Brenner BG, Gryllis C, Wainberg MA (1990) Role of antibody-dependent cellular cytotoxicity and lymphokine-activated killer cells in AIDS and related diseases. J Leukoc Biol 50: 628–640Google Scholar
  11. Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of the influenza haemagglutinin at the of membrane fusion. Nature 371: 37–43PubMedCrossRefGoogle Scholar
  12. Callahan KM, Fort MM, Obah EA, Reinherz EL, Siliciano RF (1990) Genetic variability in HIV-1 gp120 affects interactions with HLA molecules and T cell receptor. J Immunol 144: 3341–3346PubMedGoogle Scholar
  13. Callahan KM, Rowell JF, Soloski MJ, Machamer CE, Siliciano RF (1993) HIV-1 envelope protein is expressed on the surface of infected cells before its processing and presentation to class II- restricted T lymphocytes. J Immunol 151: 2928–2942PubMedGoogle Scholar
  14. Chen ZW, Kou ZC, Shen L, Reimann KA, Letvin NL (1993) Conserved T-cell receptor repertoire in simian immünodeficiency virus-infected rhesus monkeys. J Immunol 151: 2177–2187PubMedGoogle Scholar
  15. Cheng-Mayer C, Seto D, Tateno M, Levy JA (1988) Biological features of HIV-1 that correlate with virulence in the host. Science 240: 80–82PubMedCrossRefGoogle Scholar
  16. Chirmule N, Kalyanaraman V, Oyaizu N, Pahwa S (1988) Inhibitory influences of envelope glycoproteins of HIV-1 on normal immune responses. J Acquir Immune Defic Syndr 1, 425–430PubMedGoogle Scholar
  17. Chirmule N, Kalyanaraman VS, Oyaizu N, Slade HB, Pahwa S (1990) Inhibition of functional properties of tetanus antigen-specific T-cell clones by envelope glycoprotein gp120 of human immunodeficiency virus. Blood 75: 152–159PubMedGoogle Scholar
  18. Clayton LK, Sieh M, Pious DA, Reinherz EL (1989) Identification of human CD4 residues affecting class II MHC versus HIV-1 gp120 binding. Nature 339: 548–551PubMedCrossRefGoogle Scholar
  19. Crise B, Rose JK (1992) Human immunodeficiency virus type 1 glycoprotein precursor retains a CD4-p56lck complex in the endoplasmic reticulum. J Virol 66: 2296–2301PubMedGoogle Scholar
  20. Crise B, Buonocore L, Rose JK (1990) CD4 is retained in the endoplasmic reticulum by the human immunodeficiency virus type 1 glycoprotein precursor. J Virol 64: 5585–5593PubMedGoogle Scholar
  21. Curiel TJ, Wong JT, Gorczyca PF, Schooley RT, Walker BD (1993) CD4+ human immunodeficiency virus type 1 (HIV-1) envelope-specific cytotoxic T lymphocytes derived from the peripheral blood cells of an HIV-1-infected individual. AIDS Res Hum Retroviruses 9: 61–68Google Scholar
  22. Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312: 763–767PubMedCrossRefGoogle Scholar
  23. Daniel V, Susal C, Prodeus AP, Zimmermann R, Huth-Kuhne A, Opelz G (1993a) CD4+ lymphocyte depletion in HIV-infected patients is associated with gp120-immunoglobulin-complement attachment to CD4+ cells. Vox Sang 64: 31–36PubMedCrossRefGoogle Scholar
  24. Daniel V, Susal C, Weimer R, Zimmermann R, Huth-Kuhne A, Opelz G (1993b) Association of T cell and macrophage dysfunction with surface gp120-immunoglobulin-complement complexes in HIV-infected patients. Clin Exp Immunol 93: 152–156PubMedCrossRefGoogle Scholar
  25. Earl PL, Doms RW, Moss B (1990) Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. Proc Natl Acad Sci USA 87: 648–652PubMedCrossRefGoogle Scholar
  26. Fenyo EM, Morfeldt-Manson L, Chiodi F, Lind B, von Gegerfelt A, Albert J, Olausson E, Asjo B (1988) Distinctive replicative and cytopathic characteristics of human immunodeficiency virus isolates. J Virol 62: 4414–4419PubMedGoogle Scholar
  27. Fisher AG, Ensoli B, Looney D, Rose A, Gallo RC, Saag MS, Shaw GM, Hahn BH, Wong-Staal F (1988) Biologically diverse molecular variants within a single HIV-1 isolate. Nature 334: 444–447PubMedCrossRefGoogle Scholar
  28. Gartner S, Markovits P, Markovitz DM, Kaplan MH, Gallo RC, Popovic M (1986) The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233: 215–219PubMedCrossRefGoogle Scholar
  29. Gelderblom HR, Reupke H, Pauli G (1985) Loss of envelope antigens of HTLV-III/LAV, a factor in AIDS pathogenesis. Lancet 2: 1016–1017PubMedCrossRefGoogle Scholar
  30. Gelderblom HR, Hausmann EHS, Ozel M, Pauli G, Koch MA (1987) The structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology 156: 171–176PubMedCrossRefGoogle Scholar
  31. Giorgi JV. Fahey JL, Smith DC, Hultin LE, Cheng E, Mitsuyasu RT, Detels R (1987) Early effects of HIV on CD4+ lymphocytes in vivo. J Immunol 138: 3725–3730Google Scholar
  32. Gougeon ML, Garcia S, Heeney J, Tschopp R, Lecoeur H, Guetard D, Rame V, Dauguet C, Montagnier L (1993) Programmed cell death in AIDS-related HIV and SIV infections. AIDS Res Hum Retroviruses 9: 553–563PubMedCrossRefGoogle Scholar
  33. Groux H, Torpier G, Monte D, Mouton Y, Capron A, Ameisen JC (1992) Activation-induced death by apoptosis in CD4+T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med 175: 331–340PubMedCrossRefGoogle Scholar
  34. Gurley RJ, Ikeuchi K, Byrn RA, Anderson K, Groopman JE (1989) CD4+ lymphocyte function with early human immunodeficiency virus infection. Proc Natl Acad Sci USA 86: 1993–1997PubMedCrossRefGoogle Scholar
  35. Habeshaw JA, Dalgleish AG, Bountiff L, Newell AL, Wilks D, Walker LC, Manca F (1990) AIDS pathogenesis: HIV envelope and its interaction with cell proteins. Immunol Today 11: 418–425PubMedCrossRefGoogle Scholar
  36. Hammond SA, Obah E, Stanhope P, Monell CR, Strand M, Robbins FM, Bias WB, Karr RW, Koenig S, Siliciano RF (1991) Characterization of a conserved T cell epitope in HIV-1 gp41 recognized by vaccine-induced human cytolytic T cells. J Immunol 146: 1470–1477PubMedGoogle Scholar
  37. Hammond SA, Bollinger RC, Stanhope PE, Quinn TC, Schwartz D, Clements ML, Siliciano RF (1992) Comparative clonal analysis of human immunodeficiency virus type 1 (HIV-D-specific CD4+ and CD8+ cytolytic T lymphocytes isolated from seronegative humans immunized with candidate HIV-1 vaccines. J Exp Med 176: 1531–1542PubMedCrossRefGoogle Scholar
  38. Harper ME, Marselle LM, Gallo RC, Wong-Staal F (1986) Detection of lymphocytes expressing human T-lymphotropic virus type III in lymph nodes and peripheral blood from infected individuals by in situ hybridization. Proc Natl Acad Sci USA 83: 772–776PubMedCrossRefGoogle Scholar
  39. Hildreth JE, Orentas RJ (1989) Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-induced syncytium formation. Science 244: 1075–1078PubMedCrossRefGoogle Scholar
  40. Ho DD, Rota TR, Hirsh MS (1986) Infection of monocyte/macrophages by human T lymphotropic virus type III. J Clin Invest 77: 1712–1720PubMedCrossRefGoogle Scholar
  41. Horak ID, Popovik M, Horak EM, Lucas PJ, Gress RE, June CH, Bolen JB (1990) No T-cell tyrosine protein kinase signaling or calcium mobilization after CD4 association with HIV-1 or HIV-1 gp120. Nature 348: 557–560PubMedCrossRefGoogle Scholar
  42. Hoxie JA, Alpers JD, Rackowski JL, Huebner K, Haggarty BS, Cedarbaum AJ, Reed JC (1986) Alterations in T4 (CD4) protein and NA synthesis in cells infected with HIV. Science 234: 1123–1127PubMedCrossRefGoogle Scholar
  43. Imberti L, Sottini A, Bettinardi A, Puoti M, Primi D (1991) Selective depletion in HIV infection of T cells that bear specific T cell receptor V beta sequences. Science 254: 860–862PubMedCrossRefGoogle Scholar
  44. Johnson RP, Hammond SA, Trocha A, Siliciano RF, Walker BD (1994) Induction of a MHC class I- restricted cytotoxic T lymphocyte response to a highly conserved region of HIV-1 gp120 in seronegative humans immunized with a candidate HIV-1 vaccine. J Virol 68: 3145–3153PubMedGoogle Scholar
  45. Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T Gluckman JC, Montagnier L (1984) J-lymphocyte T4 molecule behaves as the receptor for the human retrovirus LAV. Nature 312: 767–768PubMedCrossRefGoogle Scholar
  46. Koenig S, Fauci AS (1988) Immunopathogenesis and immune response to human immunodeficiency virus. In: Dita V, Hellman S, Rosenberg SA (eds) AIDS. Lippincott, PhiladelphiaGoogle Scholar
  47. Koga Y, Sasaki M, Nakamura K, Kimura G, Nomoto K (1990a) Intracellular distribution of the envelope glycoprotein of human immunodeficiency virus and its role in the production of cytopathic effect in CD4+ and CD4 human cell lines. J Virol 64: 4661–4671PubMedGoogle Scholar
  48. Koga Y, Sasaki M, Yoshida H, Wigzell H, Kimura G, Nomoto K (1990b) Cytopathic effect determined by the amount of CD4 molecules in human cell lines expressing envelope glycoprotein of HIV. J Immunol 144: 94–102PubMedGoogle Scholar
  49. Koga Y, Sasaki M, Yoshida H, Oh-Tsu M, Kimura G, Nomoto K (1991) Disturbance of nuclear transport of proteins in CD4+ cells expressing gp160 of human immunodeficiency virus. J Virol 65: 5609–5612PubMedGoogle Scholar
  50. Koga Y, Nakamura K, Sasaki M, Kimura G, Nomoto K (1994) The difference in gp160 and gp120 of HIV type 1 in the induction of CD4 downregulation preceding single-cell killing. Virology 201: 137–141PubMedCrossRefGoogle Scholar
  51. Koot M, Keet IP, Vos AH, de Goede RE, Roos MT, Coutinho RA, Miedema F, Schellekens PT, Tersmette M (1993) Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann Intern Med 118: 681–688PubMedGoogle Scholar
  52. Kornfeld H, Cruikshank WW, Pyle SW, Berman JS, Center DM (1988) Lymphocyte activation by HIV-1 envelope glycoprotein. Nature 335: 445–448PubMedCrossRefGoogle Scholar
  53. Kowalski M, Bereron L, Dorfman T, Haseltine W, Sodroski W (1991) Attenuation of human immunodeficiency virus type 1 cytopathic effect by a mutation affecting the transmembrane envelope glycoprotein. J Virol 65: 281–291PubMedGoogle Scholar
  54. Krowka J, Stites D, Mills J, Hollander H, Mugh T, Busch M, Wilhelm L, Blackwood L (1988) Effects of interleukin 2 and large envelope glycoprotein (gp120) of human immunodeficiency virus (HIV) on lymphocyte proliferative responses to cytomegalovirus. Clin Exp Immunol 72: 179–185PubMedGoogle Scholar
  55. Kundu SK, Merigan TC (1992) Equivalent recognition of HIV proteins, Env, Gag and Pol by CD4+and CD8+cytotoxic T-lymphocytes [published erratum appears in AIDS (1992) 6(9): following 1051]. AIDS 6: 643–649PubMedCrossRefGoogle Scholar
  56. Kundu SK, Katzenstein D, Moses LE, Merigan TC (1992) Enhancement of human immunodeficiency virus (H)-specific CD4+ and CD8+ cytotoxic T-lymphocyte activities in HIV-infected asymptomatic patients given recombinant gp160 vaccine. Proc Natl Acad Sci USA 89: 11204–11208PubMedCrossRefGoogle Scholar
  57. Landau NR, Warton M, Littman DR (1988) The envelope glycoprotein of the human immunodeficiency virus binds to the immunoglobulin-like domain of CD4. Nature 334: 159–162PubMedCrossRefGoogle Scholar
  58. Lane HC, Depper JM, Greene WC, Whalen G, Waldmann TA, Fauci (1985) Qualitative analysis of immune function in patients with the acquired immunodeficiency syndrome: evidence for a selective defect in soluble antigen recognition. N Engl J Med 313: 79–84PubMedCrossRefGoogle Scholar
  59. Lanzavecchia A, Roosnek E, Gregory T, Berman P, Abrignani S (1988) T cells can present antigens such as HIV gp120 targeted to their own surface molecules. Nature 334: 530–532PubMedCrossRefGoogle Scholar
  60. Lasky LA, Nakamura G, Smith DH, Fennie C, Shimasaki C, Patzer E, Berman P, Gregory T, Capon DJ (1987) Delineation of a region of the human immunodeficiency virus type 1 gp120 glycoprotein critical for interaction with the CD4 receptor. Cell 50: 975–985PubMedCrossRefGoogle Scholar
  61. Laurence J, Hodtsev AS, Posnett DN (1992) Superantigen implicated in dependence of HIV-1 replication in T cells on TCR V beta expression. Nature 358: 255–259PubMedCrossRefGoogle Scholar
  62. Laurent-Crawford AG, Hovanessian AG (1993) The cytopathic effect of human immunodeficiency virus is independent of high levels of unintegrated viral DNA accumulated in response to superinfection of cells. J Gen Virol 74: 2619–2628PubMedCrossRefGoogle Scholar
  63. Laurent-Crawford AG, Krust B, Muller S, Riviere Y, Rey-Cuille MA, Bechet JM, Montagnier L, Hovanessian AG (1991) The cytopathic effect of HIV is associated with apoptosis. Virology 185: 829–839PubMedCrossRefGoogle Scholar
  64. Layne SP, Merges MJ, Dembo M, Spouge JL, Conley SR, Moore JP, Raina JL, Renz H, Gelderblom HR, Nara PL (1992) Factors underlying the spontaneous inactivation and susceptibility to neutralization of human immunodeficiency virus. Virology 189: 695–714PubMedCrossRefGoogle Scholar
  65. Liegler TJ, Stites DP (1994) HIV-1 gp120 and anti-gp120 induce reversible unresponsiveness in peripheral CD4 T lymphocytes. J Acquir Immune Defic Syndr 7: 340–348PubMedGoogle Scholar
  66. Lifson JD, Feinberg MB, Reyes GR, Rabin L, Banapour B, Chakrabarti S, Moss B, Wong-Staal F, Steimer KS, Engleman EG (1986a) Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature 323: 725–728Google Scholar
  67. Lifson JD, Reyes GR, Mrath MS, Stein BS, Engleman EG (1986b) AIDS retrovirus induced cytopathology: giant cell formation and involvement of CD4 antigen. Science 232: 1123–1127PubMedCrossRefGoogle Scholar
  68. Littaua RA, Oldstone MB, Takeda A, Ennis FA (1992) A CD4+ cytotoxic T-lymphocyte clone to a conserved epitope on human immunodeficiency virus type 1 p24: cytotoxic activity and secretion of interleukin-2 and interleukin-6. J Virol 66: 608–611PubMedGoogle Scholar
  69. Lu YY, Koga Y, Tanaka K, Sasaki M, Kimura G, Nomoto K (1994) Apoptosis induced in CD4+ cells expressing gp160 of human immunodeficiency virus type 1. J Virol 68: 390–399PubMedGoogle Scholar
  70. Lyerly HK, Matthews TJ, Langlois AJ, Bolognesi DP, Weinhold KJ (1987) Human T-cell lymphotropic virus IIIB glycoprotein (gp120) bound to CD4 determinants on normal lymphocytes and expressed by infected cells as a target for immune attack. Proc Natl Acad Sci USA 84: 4601–4605PubMedCrossRefGoogle Scholar
  71. Macher AM, De Vinatea ML, Angritt P, Tuur SM, Reichert CM (1988) Pathological features of patients infected with human immunodeficiency virus. In: Dita D, Hellman S, Rosenberg SA (eds) AIDS Lippincott, Philadelphia, pp 155–184Google Scholar
  72. Maddon PJ, Dalgleish AG, Mougal JS, Clapham PR, Weiss RA, Axel R (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47: 333–348PubMedCrossRefGoogle Scholar
  73. Manca F, Habeshaw JA, Dalgleish AG (1990) HIV envelope glycoprotein, antigen specific T-cell responses, and soluble CD4. Lancet 335: 811–815PubMedCrossRefGoogle Scholar
  74. Mann DL, Lasane F, Popovic M, Arthur LO, Robey WG, Blattner WA, Newman MJ (1987) HTLV-III large envelope protein (gp120) suppresses PHA-induced lymphocyte blastogenesis. J Immunol 138: 2640–2644PubMedGoogle Scholar
  75. Martin SJ, Matear PM, Vyakarnam A (1994) HIV-1 infection of human CD4+ T cell in vitro. Differential induction of apoptosis in these cells. J Immunol 152: 330–342PubMedGoogle Scholar
  76. McCune JM, Rabin LB, Feinberg MB, Lieberman M, Kosek JC, Reyes GR, Weissman IL (1988) Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus. Cell 53: 55–67PubMedCrossRefGoogle Scholar
  77. McDougal JS, Kennedy MS, Sligh JM, Cort SP, Mawle A, Nicholson JK (1986a) Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110K viral protein and the T4 molecule. Science 231: 382–385PubMedCrossRefGoogle Scholar
  78. McDougal JS, Nicholson JK, Cross GD, Cort SP, Kennedy MS, Mawle AC (1986b) Binding of the human retrovirus HTLV-III/LAV/ARV/HIV to the CD4 (T4) molecule: conformation dependence, epitope mapping, antibody inhibition, and potential for idiotypic mimicry. J Immunol 137: 2937–2944PubMedGoogle Scholar
  79. McKeating JA, McKnight A, Moore JP (1991) Differential loss of envelope glycoprotein gp120 from virions of human immunodeficiency virus type 1 isolates: Effects on infectivity and neutralization. J Virol 65: 852–860PubMedGoogle Scholar
  80. Meyaard L, Otto SA, Jonker RR, Mijnster MJ, Keet RPM, Miedema F (1992) Programmed cell death of T cells in HIV-1 infection. Science 257: 217–219PubMedCrossRefGoogle Scholar
  81. Meyaard L, Otto SA, Keet IP, Roos MT, Miedema F (1994) Programmed death of T cells in human immunodeficiency virus infection. No correlation with progression to disease. J Clin Invest 93:982–988PubMedCrossRefGoogle Scholar
  82. Miskovsky EP, Liu AY, Pavlat W, Viveen R, Stanhope PE, Finzi D, Fox WMI, Hruban RH, Podack ER, Siliciano RF (1994) Mechanism of cytolysis by HIV-1-specific CD4+ human CTL induced by candidate AIDS vaccines. J Immunol 152: 2787–2799Google Scholar
  83. Mittler RS, Hoffmann MK (1989) Synergism between HIV gp120 and gp120-specific antibody in blocking human T cell activation. Science 245: 1380–1382PubMedCrossRefGoogle Scholar
  84. Moore JP, McKeating JA, Weiss RA, Sattentau QJ (1990) Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 250: 1139–1142PubMedCrossRefGoogle Scholar
  85. Moore MW, Carbone FW, Bevan MJ (1988) Introduction of soluble antigen into the class I pathway of antigen processing and presentation. Cell 54: 777–786PubMedCrossRefGoogle Scholar
  86. Morrison LA, Lukacher A, Braciale VL, Fan DP, Braciale TP (1986) Differences in antigen presentation to MHC class I and class II-restricted influenza virus specific cytolytic T lymphocyte clones. J Exp Med 163: 903–913PubMedCrossRefGoogle Scholar
  87. Newell MK, Haughn LJ, Maroun CR, Julius MH (1990) Death of mature T cells by separate ligation of CD4 and the T-cell antigen receptor. Nature 347: 286–289PubMedCrossRefGoogle Scholar
  88. Nicloson JKA, Gross GD, Callaway CS, McDougal JS (1986) In vitro infection of human monocytes with T lymphotrophic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). J Immunol 137: 323–329Google Scholar
  89. Oh S-K, Cruishank WW, Raina J, Blanchard GC, Adler WH, Walker J, Kornfeld H (1992) Identification of HIV-1 envelope glycoproteins in the serum of AIDS and ARC patients. J Acquir Immune Defic Syndr 5: 251–256PubMedGoogle Scholar
  90. Orentas RJ, Hildreth JE, Obah E, Polydefkis M, Smith GE, Clements ML, Siliciano RF (1990) Induction of CD4+ human cytolytic T cells specific for HIV-infected cells by a gp160 subunit vaccine. Science 248: 1234–1237PubMedCrossRefGoogle Scholar
  91. Polydefkis M, Koenig S, Flexner C, Obah E, Gebo K, Chakrabarti S, Earl PL, Moss B, Siliciano RF (1990) Anchor sequence-dependent endogenous processing of human immunodeficiency virus 1 envelope glycoprotein gp160 for CD4+T cell recognition. J Exp Med 171: 875–887PubMedCrossRefGoogle Scholar
  92. Posnett DN, Kabak S, Hodtsev AS, Goldberg EA, Asch A (1993) T-cell antigen receptor V beta subsets are not preferentially deleted in AIDS. AIDS 7: 625–631PubMedCrossRefGoogle Scholar
  93. Richman DD, Bozzette SA (1994) The impact of the syncytium-inducing phenotype of human immunodeficiency virus on disease progression. J Infect Dis 169: 968–974PubMedCrossRefGoogle Scholar
  94. Rosenstein Y, Burakoff SJ, Herrmann SH (1994) HIV-gp120 can block CD4-class II MHC-mediated adhesion. J Immunol 144: 526–531Google Scholar
  95. Salahuddin SZ, Rose RM, Groopman JE, Markham PD, Gallo RC (1986) Human T lymphotropic virus type III infection of human alveolar macrophages. Blood 68: 281–284PubMedGoogle Scholar
  96. Schneider J, Kaaden O, Copeland TD, Oroszlan S, Hunsmann G (1986) Shedding and interspecies type seo-reactivity of the envelope glycopolypeptide gp120 of the human immunodeficiency virus. J Gen Virol 67: 2533–2538PubMedCrossRefGoogle Scholar
  97. Schnittman S, Lane HC, Roth J, Burrows A, Folks T, Kehri J, Koenig S, Berman P, Fauci A (1988) Characterization of gp120 binding of CD4 and an assay that measures ability of sera to inhibit this binding. J Immunol 141: 4181–4186PubMedGoogle Scholar
  98. Schwartz S, Felber BK, Fenyo EM, Pavlakis GN (1990) Env and Vpu proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs. J Virol 64: 5448–5456PubMedGoogle Scholar
  99. Shalaby MR, Krowka JF, Gregory TJ, Hirabayashi SE, McCabe SM, Kaufman DS, Stites DP, Ammann AJ (1987) The effects of human immunodeficiency virus recombinant envelope glycoprotein on immune cell functions in vitro. Cell Immunol 110: 140–148PubMedCrossRefGoogle Scholar
  100. Shearer GM, Bernstein DC, Tung KSK, Via CS, Redfield R, Salahuddin SZ, Gallo RC (1986) A model for the selective loss of major histocompatibility complex self-restricted T cell immune responses during the development of acquired immune deficiency syndrome (AIDS). J Immunol 137: 2514–2521PubMedGoogle Scholar
  101. Siliciano RF, Lawton T, Knall C, Karr RC, Berman P, Gregory T, Reinherz EL (1988) Analysis of host-virus interactions in AIDS with anti-gp120 human T cell clones: effect of HIV sequence variation and a mechanism for CD4+cell depletion. Cell 54: 561–575PubMedCrossRefGoogle Scholar
  102. Siliciano RF, Knall C, Karr RC, Berman P, Gregory T, Reinherz EL (1989) Recognition of human immunodeficiency virus (HIV) glycoprotein gp120 by T cells: role of monocyte CD4 in the presentation of gp120. J Immunol 142: 1506–1511PubMedGoogle Scholar
  103. Sodroski J, Goh WC, Rosen C, Campbell K, Haseltine WA (1986) Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. nature 322: 470–474PubMedCrossRefGoogle Scholar
  104. Somasundaran M, Robinson HL (1987) A major mechanism of human immunodeficiency virus-induced cell killing does not involve cell fusion. J Virol 61: 3114–3119PubMedGoogle Scholar
  105. Stanhope PE, Clements ML, Siliciano RF (1993a) Human CD4+ cytolytic T lymphocyte responses to a human immunodeficiency virus type 1 gp160 subunit vaccine. J Infect Dis 168: 92–100PubMedCrossRefGoogle Scholar
  106. Stanhope PE, Liu AY, Pavlat W, Pitha PM, Clements ML, Siliciano RF (1993b) An HIV-1 envelope protein vaccine elicits a functionally complex human CD4+ T cell response that includes cytolytic T lymphocytes. J Immunol 150: 4672–4686PubMedGoogle Scholar
  107. Stevenson M, Meier C, Mann AM, Chapman N, Wasiak A (1988) Envelope glycoprotein of HIV induces interference and cytolysis resistance in CD4+ cells: mechanism for persistence in AIDS. Cell 53: 483–496PubMedCrossRefGoogle Scholar
  108. Stevenson M, Haggerty S, Lamonica C, Mann AM, Meier C, Wasiak A (1990) Cloning and characterization of human immunodeficiency virus type 1 variants diminished in the ability to induce syncytium-independent cytolysis. J Virol 64: 3792–3803PubMedGoogle Scholar
  109. Terai C, Kornbluth RS, Pauza CD, Richman DD, Carson DA (1991) Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1. J Clin Invest 87: 1710–1715PubMedCrossRefGoogle Scholar
  110. Tersmette M, Gruters RA, de Wolf F, de Goede RE, Lange JM, Schellekens PT, Goudsmit J, Huisman HG, Miedema F (1989) Evidence for a role of virulent human immunodeficiency virus (HIV) variants in the pathogenesis of acquired immunodeficiency syndrome: studies on sequential HIV isolates. J Virol 63: 2118–2125PubMedGoogle Scholar
  111. Thali M, Olshevsky U, Furman C, Gabuzda D, Posner M, Sodroski J (1991) Characterization of a discontinuous human immunodeficiency virus type 1 gp120 epitope recognized by a broadly reactive neutralizing human monoclonal antibody. J Virol 65: 6188–6193PubMedGoogle Scholar
  112. Tyler DS, Nastala CL, Stanley SD, Matthews TJ, Lyerly HK, Bolognesi DP, Weinhold KJ (1989) GP120 specific cellular cytotoxicity in HIV-1 seropositive individuals. Evidence for circulating CD16+ effector cells armed in vivo with cytophilic antibody. J Immunol 142: 1177–1182PubMedGoogle Scholar
  113. Tyler DS, Stanley SD, Nastala CA, Austin AA, Bartlett JA, Stine KC, Lyerly HK, Bolognesi DP, Weinhold KJ (1990) Alterations in antibody-dependent cellular cytotoxicity during the course of HIV-1 infection. Humoral and cellular defects. J Immunol 144: 3375–3384PubMedGoogle Scholar
  114. van Noesel CJM, Gruters RA, Terpstra FG, Schellekens PTA, van Lier RAW, Miedema F (1994) Functional and phenotypic evidence for a selective loss of memory T cells in asymptomatic human immunodeficiency virus-infected men. J Clin Invest 86: 293–299CrossRefGoogle Scholar
  115. Walker BD, Plata F (1990) Cytotoxic T lymphocytes against HIV (review). AIDS 4: 177–184PubMedCrossRefGoogle Scholar
  116. Weinhold KJ, Lyerly HK, Stanley SD, Austin AA, Matthews TJ, Bolognesi DP (1989) HIV-1 GP120- mediated immune suppression and lymphocyte destruction in the absence of viral infection. J Immunol 142: 3091–3097PubMedGoogle Scholar
  117. White J, Kielian M, Helenius A (1983) Membrane fusion proteins of enveloped animal viruses. Q Rev Biophys 16: 151–195PubMedCrossRefGoogle Scholar
  118. Willey RL, Bonifacino JS, Potts BJ, Martin MA, Klausner RD (1988) Biosynthesis, cleavage, and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp160. Proc Natl Acad Sci USA 85: 9580–9584PubMedCrossRefGoogle Scholar
  119. Willey RL, Maldarelli F, Martin MA, Strebel K (1992a) Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gp160-CD4 complexes. J Virol 66: 226–234PubMedGoogle Scholar
  120. Willey RL, Maldarelli F, Martin MA, Strebel K (1992b) Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol 66: 7193–7200PubMedGoogle Scholar
  121. York-Higgins D, Chang-Mayer C, Bauer D, Levy JA, Dina D (1990) Human immunodeficiency virus type 1 cellular host range, replication, and cytopathicity are linked to the envelope region of the viral genome. J Virol 64: 4016–4020PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • R. F. Siliciano
    • 1
  1. 1.Department of Medicine, 1049 Ross BuildingJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations