Advertisement

The Structural Basis of CD4 — MHC Class II Interactions: Coreceptor Contributions to T Cell Receptor Antigen Recognition and Oligomerization-Dependent Signal Transduction

  • R. König
  • S. Fleury
  • R. N. Germain
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 205)

Abstract

During thymic differentiation, precursor T lymphocytes committed to the αβ receptor lineage differentiate along two distinct pathways into mature cells distinguished by the mutually exclusive expression of either the CD4 or CD8 cell surface glycoproteins (Reinherz et al. 1980; Reinherz and Schlossman 1980; Fitch 1986; von Boehmer 1988). Early studies of these two lymphocyte subpopulations (CD4+ and CD8+) suggested an association between the functional behavior of a T cell and its expression of either CD4 or CD8, with the former associated with B cell helper activity or delayed type hypersensitivity and the latter with cytotoxic activity. As the importance of class I and class II major histocompatibility complex (MHC) proteins in antigen recognition by αβ T cells became apparent, several investigators examined whether the best correlation of CD4 and CD8 expression was with effector function or, alternatively, with specificity of MHC molecule recognition. Expression of CD8 was found to be tightly linked with reactivity to class I MHC molecules, whereas expression of CD4 was associated with reactivity to class II MHC antigens, irrespective of the helper/cytotoxic behavior of the T cells being studied (Okada and Henney 1980; Swain 1981; Engleman et al. 1981; Biddison et al. 1982; Krensky et al. 1982; Meuer et al. 1982; Spits et al. 1982; Swain 1983; Swain et al. 1983; Fitch 1986; Bierer et al. 1989).

Keywords

Major Histocompatibility Complex Major Histocompatibility Complex Class Major Histocompatibility Complex Antigen Coreceptor Function Major Histocompatibility Complex Class Specificity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson P, Blue ML, Schlossman SF (1988) Comodulation of CD3 and CD4. Evidence for a specific association between CD4 and approximately 5% of the CD3: T cell receptor complexes on helper T lymphocytes. J Immunol 140: 1732–1737PubMedGoogle Scholar
  2. Ashkenazi A, Presta LG, Marsters SA, Camerato TR, Rosenthal, KA, Fendly BM, Capon DJ (1990) Mapping the CD4 binding site for human immunodeficiency virus by alanine-scanning mutagenesis. Proc Natl Acad Sci USA 87: 7150–7154PubMedCrossRefGoogle Scholar
  3. Ashwell JD, Klausner RD (1990) Genetic and mutational analysis of the T-cell antigen receptor. Annu Rev Immunol 8: 139–167PubMedCrossRefGoogle Scholar
  4. Biddison WE, Rao PE, Talle MA, Goldstein G, Shaw S (1982) Possible involvement of the OKT4 molecule in T cell recognition of class II HLA antigens. Evidence from studies of cytotoxic T lymphocytes specific for SB antigens. J Exp Med 156: 1065–1076PubMedCrossRefGoogle Scholar
  5. Bierer BE, Sleckman BP, Ratnofsky SE, Burakoff SJ (1989) The biologic roles of CD2, CD4, and CD8 in T-Cell activation. Annu Rev Immunol 7: 579–599PubMedCrossRefGoogle Scholar
  6. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329: 506–512PubMedCrossRefGoogle Scholar
  7. Bowman MR, MacFerrin KD, Schreiber SL, Burakoff SJ (1990) Identification and structural analysis of residues in the V1 region of CD4 involved in interaction with human immunodeficiency virus envelope glycoprotein gp120 and class II major histocompatibility complex molecules. Proc Natl Acad Sci USA, 87: 9052–9056PubMedCrossRefGoogle Scholar
  8. Braunstein NS, Germain RN (1987) Allele-specific control of la molecule surface expression and conformation: implications for a general model of la structure-function relationships. Proc Natl Acad Sci USA 84: 2921–2925PubMedCrossRefGoogle Scholar
  9. Brodsky MH, Warton M, Myers RM, Littman DR (1990) Analysis of the site in CD4 that binds to the HIV envelope glycoprotein, J Immunol 144: 3078–3086PubMedGoogle Scholar
  10. Brown JH, Jardetzky TS, Gorga JC, Stem LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364: 33–39PubMedCrossRefGoogle Scholar
  11. Cammarota G, Scheirle A, Takacs B, Doran DM, Knorr R, Bannwarth W, Guardiola J, Sinigaglia F (1992) Identification of a CD4 binding site on the P2 domain of HLA-DR molecules. Nature, 356: 799–801PubMedCrossRefGoogle Scholar
  12. Clayton LK, Hussey RE, Steinbrich R, Ramachandran H, Husain Y, Reinherz EL (1988) Substitution of murine for human CD4 residues identifies amino acids critical for HIV-gp120 binding. Nature 335: 363–366PubMedCrossRefGoogle Scholar
  13. Clayton LK, Sieh M, Pious DA, Reinherz EL (1989) Identification of human CD4 residues affecting class II MHC versus HIV-1 gp120 binding. Nature 339: 548–551PubMedCrossRefGoogle Scholar
  14. Corr M, Slanetz AE, Boyd LF, Jelonek MT, Khilko S, Al-Ramadi BK, Kim YS, Mäher SE, Bothwell ALM, Margulies DH (1994) T cell receptor/MHC class I- peptide interactions: affinity, kinetics, and specificity. Science 265: 946–949PubMedCrossRefGoogle Scholar
  15. Demotz S, Grey HM, Sette A (1990) The minimal number of class II MHC-antigen complexes needed for T cell activation. Science 249: 1028–1030PubMedCrossRefGoogle Scholar
  16. Dialynas DP, Wilde DB, Marrack P, Pierres A, Wall KA, Havran W, Otten G, Loken MR, Pierres M, Kappler J, Fitch FW (1983) Characterization of the murine antigenic determinant, designated L3T4a, recognized by monoclonal antibody GK1.5: expression of L3T4a by functional T cell clones appears to correlate primarily with class II MHC antigen-reactivity. Immunol Rev 74: 29–56PubMedCrossRefGoogle Scholar
  17. Dintzis HM, Dintzis RZ, Vogelstein B (1976) Molecular determinants of immunogenicity: the immunon model of immune response. Proc Natl Acad Sci USA 73: 3671–3675PubMedCrossRefGoogle Scholar
  18. Doyle C, Strominger JL (1987) Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature 330: 256–259PubMedCrossRefGoogle Scholar
  19. Dustin ML, Springer TA (1989) T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341: 619–624PubMedCrossRefGoogle Scholar
  20. Engleman EG, Benike CJ, Grumet FC, Evans RL (1981) Activation of human T lymphocyte subsets: helper and suppressor/cytotoxic T cells recognize and respond to distinct histocompatibility antigens. J Immunol 127: 2124–2129PubMedGoogle Scholar
  21. Fitch FW (1986) T cell clones and T cell receptors. Microbiol. Rev 50: 50–69PubMedGoogle Scholar
  22. Fleury S, Lamarre D, Meloche S, Ryu SE, Cantin C, Hendrickson WA, Sekaly RP (1991) Mutational analysis of the interaction between CD4 and class II MHC: class II antigens contact CD4 on a surface opposite the gp120-binding site. Cell 66: 1037–1049PubMedCrossRefGoogle Scholar
  23. Fleury S, Thibodean J, Croteau G, Labrecque N, Aronson H-E, Cantin F, Long EO, Sékaly R-P (1995) Polymorphism in the β2 domain of HLA-DR affects the interaction with CD4. J Exp Med 182 (in press)Google Scholar
  24. Gay D, Maddon P, Sekaly R, Talle MA, Godfrey M, Long E, Goldstein G, Chess L, Axel R, Kappler J, Marrack P (1987) Functional interaction between human T-cell protein CD4 and the major histocompatibility complex HLA-DR antigen. Nature 328: 626–629PubMedCrossRefGoogle Scholar
  25. Gay D, Buus S, Pasternak J, Marrack P (1988) The T-cell accessory molecule CD4 recognizes a monomorphic determinant on isolated la. Proc Natl Acad Sci USA 85: 5629–5633PubMedCrossRefGoogle Scholar
  26. Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76: 287–299PubMedCrossRefGoogle Scholar
  27. Golding H, McCluskey J, Munitz Tl, Germain RN, Margulies DH, Singer A (1985) T-cell recognition of a chimaeric class II/class I MHC molecule and the role of L3T4. Nature 317: 425–427PubMedCrossRefGoogle Scholar
  28. Greenstein JL, Kappler J, Marrack P, Burakoff SJ (1984) The role of L3T4 in recognition of la by a cytotoxic, H-2Dd-specific T cell hybridoma. J Exp Med 159: 1213–1224PubMedCrossRefGoogle Scholar
  29. Harding CV, Unanue ER (1990) Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature 346: 574–576PubMedCrossRefGoogle Scholar
  30. Janeway CA Jr (1992) The T cell receptor as a multicomponent signaling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annu Rev Immunol 10: 645–674PubMedCrossRefGoogle Scholar
  31. Janeway CA Jr, Rojo J, Saizawa K, Dianzani U, Portoles P, Tite J, Haque S, Jones B (1989) The co-receptor function of murine CD4. Immunol Rev 109: 77–92PubMedCrossRefGoogle Scholar
  32. Julius M, Maroun CR, Haughn L (1993) Distinct roles for CD4 and CD8 as coreceptors in antigen receptor signaling. Immunol Today 14: 177–183PubMedCrossRefGoogle Scholar
  33. König R, Huang LY, Germain RN (1992) MHC class II interaction with CD4 mediated by a region analogous to the MHC class I binding site for CD8. Nature 356: 796–798PubMedCrossRefGoogle Scholar
  34. König R, Shen X, Germain RN (1995) Involvement of both MHC Class II a and β chains in CD4 function indicates a role for ordered oligomeritation in T Cell activation. J Exp Med 182 (in press)Google Scholar
  35. Krensky AM, Clayberger C, Reiss CS, Strominger JL, Burakoff SJ (1982) Specificity of OKT4+ cytotoxic T lymphocyte clones. J Immunol 129: 2001–2003PubMedGoogle Scholar
  36. Kwong PD, Ryu SE, Hendrickson WA, Axel R, Sweet RM, Folena WG, Hensley P, Sweet RW (1990) Molecular characteristics of recombinant human CD4 as deduced from polymorphic crystals. Proc Natl Acad Sci USA 87: 6423–6427PubMedCrossRefGoogle Scholar
  37. Lamarre D, Ashkenazi A, Fleury S, Smith DH, Sekaly RP, Capon DJ (1989a) The MHC-binding and gp120-binding functions of CD4 are separable. Science 245: 743–746PubMedCrossRefGoogle Scholar
  38. Lamarre D, Capon DJ, Karp DR, Gregory T, Long EO, Sekaly RP (1989b) Class II MHC molecules and the HIV gp120 envelope protein interact with functionally distinct regions of the CD4 molecule. EMBO J 8: 3271–3277PubMedGoogle Scholar
  39. Landau NR, Warton M, Littman DR (1988) The envelope glycoprotein of the human immunodeficiency virus binds to the immunoglobulin-like domian of CD4. Nature 334: 159–162PubMedCrossRefGoogle Scholar
  40. Lombardi G, Barber L, Aichinger G, Heaton T, Sidhu S, Batchelor JR, Lechler Rl (1991) Structural analysis of anti-DR1 allorecognition by using DR1/H-2Ek hybrid molecules. Influence of the β2-domain correlates with CD4 dependence. J Immunol 147: 2034–2040PubMedGoogle Scholar
  41. Marrack P, Endres R, Shimonkevitz R, Zlotnik A, Dialynas D, Fitch F, Kappler J (1993) The major histocompatibility complex-restricted antigen receptor on T cells. II. Role of the L3T4 Product. J Exp Med 158: 1077–1091CrossRefGoogle Scholar
  42. Matsui K, Boniface JJ, Reay PA, Schild H, Fazekas de St, Groth B, Davis MM, (1991) Low affinity interaction of peptide-MHC complexes with T cell receptors. Science 254: 1788–1791PubMedCrossRefGoogle Scholar
  43. Mazerolles F, Amblard F, Lumbroso C, Lecomte O, Van-de-Moortele PF, Barbat C, Piatier-Tonneau D, Auffray C, Fischer A (1990) Regulation of T helper-B lymphocyte adhesion through CD4-HLA class II interaction. Eur J Immunol 20: 637–644PubMedCrossRefGoogle Scholar
  44. McCluskey J, Germain RN, Margulies DH (1985) Cell surface expression of an in vitro recombinant class II/class I major histocompatibility complex gene product. Cell 40: 247–257PubMedCrossRefGoogle Scholar
  45. McCluskey J, Munitz T, Boyd L, Germain RN, Coligan JE, Singer A, Margulies DH (1988) Cell surface expression of the amino-terminal domain of Aαk: Recognition of an isolated MHC antigenic structure by allospecific T cells but not alloantibodies. J Immunol 140: 2081–2089PubMedGoogle Scholar
  46. Meuer SC, Hussey RE, Hodgdon JC, Hercend T, Schlossman SF, Reinherz EL (1982) Surface structures involved in target recognition by human cytotoxic T lymphocytes. Science 218: 471–473PubMedCrossRefGoogle Scholar
  47. Miceli MC, Parnes JR (1993) Role of CD4 and CD8 in T cell activation and differentiation. Adv Immunol 53:59–122PubMedCrossRefGoogle Scholar
  48. Miceli MC, von Hoegen P, Parnes JR (1991) Adhesion versus coreceptor function of CD4 and CD8: role of the cytoplasmic tail in coreceptor activity. Proc Natl Acad Sci USA 88: 2623–2627PubMedCrossRefGoogle Scholar
  49. Mizukami T, Fuerst TR, Berger EA, Moss B (1988) Binding region for human immunodeficiency virus (HIV) and epitopes for H-blocking monoclonal antibodies of the CD4 molecule defined by site-directed mutagenesis. Proc Natl Acad Sci USA 85: 9273–9277PubMedCrossRefGoogle Scholar
  50. Moebius U, Clayton LK, Abraham S, Diener A, Yunis JJ, Harrison SC, Reinherz EL (1992a) Human immunodeficiency virus gp120 binding C’C” ridge of CD4 domain 1 is also involved in interaction with class II major histocompatibility complex molecules. Proc Natl Acad Sci USA 89:12008–12012PubMedCrossRefGoogle Scholar
  51. Moebius U, Clayton LK, Abraham S, Harrison SC, Reinherz EL (1992b) The human immunodeficiency virus gp120 binding site on CD4: delineation by quantitative equilibrium and kinetic binding studies of mutants in conjunction with a high-resolution CD4 atomic structure. J Exp Med 176: 507–517PubMedCrossRefGoogle Scholar
  52. Moebius U, Pallai P, Harrison SC, Reinherz EL (1993) Delineation of an extended surface contact area on human CD4 involved in class II major histocompatibility complex binding. Proc Natl Acad Sci USA 90: 8259–8263PubMedCrossRefGoogle Scholar
  53. Nag B, Wada HG, Passmore D, Clark BR, Sharma SD, Monnell HM (1993) Purified beta-chain of MHC class II binds to CD4 molecules on transfected Ha cells. J Immunol 150: 1358–1364PubMedGoogle Scholar
  54. Okada M, Henney CS (1980) The differentiation of cytotoxic T cells in vitro. II. Amplifying factor(s) produced in primary mixed lymphocyte cultures against K/D stimuli require the presence of Lyt-2+ cells but not lyt-1+ cells. J Immunol 125: 300–307PubMedGoogle Scholar
  55. Olshevsky U, Helseth E, Furman C, Li J, Haseltine W, Sodroski J (1990) Identification of individual human immunodeficiency virus type 1 gp120 amino acids important for CD4 receptor binding. J Virol 64: 5701–5707PubMedGoogle Scholar
  56. Ottenhoff THM, Elferink DG, Hermans J, De Vries RRP (1985) HLA class II restriction repertoire of antigen-specific T cells. I. The main restriction determinants for antigen presentation are associated with HLA-D/DR and not with DP and DQ. Hum Immunol 13: 105–116PubMedCrossRefGoogle Scholar
  57. Parnes JR (1989) Molecular biology and function of CD4 and CD8. Adv Immunol 44: 265–31PubMedCrossRefGoogle Scholar
  58. Peterson A, Seed B (1988) Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4. Cell 54: 65–72PubMedCrossRefGoogle Scholar
  59. Potter TA, Rajan TV, Dick RF, Bluestone JA (1989) Substitution at residue 227 of H-2 class I molecules abrogates recognition by CD8-dependent, but not CD8-independent, Cytotoxic T lymphocytes. Nature 337: 73–75PubMedCrossRefGoogle Scholar
  60. Ramesh P, Barber L, Batchelor JR, Lechler Rl (1992) Structural analysis of human anti-mouse H-2E xenorecognition: T cell receptor bias and impaired CD4 interaction contribute to weak xeno-responses. Int Immunol 4: 935–943PubMedCrossRefGoogle Scholar
  61. Ratcliffe MJ, Coggeshall KM, Newell MK, Julius MH (1992) T cell receptor aggregation, but not dimerization, induces increased cytosolic calcium concentrations and reveals a lack of stable association between CD4 and the T cell receptor. J Immunol 148: 1643–1651PubMedGoogle Scholar
  62. Reinherz EL, Schlossman SF (1980) The differentiation and function of human T lymphocytes. Cell 19: 821–827PubMedCrossRefGoogle Scholar
  63. Reinherz EL, Kung PC, Goldstein G, Levey RH, Schlossman SF (1980) Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci USA, 77: 1588–1592PubMedCrossRefGoogle Scholar
  64. Reinherz EL, Meuer SC, Schlossman SF (1983) The delineation of antigen receptors on human T lymphocytes. Immunol Today 4: 5–8CrossRefGoogle Scholar
  65. Rojo JM, Saizawa K, Janeway CA Jr (1989) Physical association of CD4 and the T cell receptor can be induced by anti-T cell receptor antibodies. Proc Natl Acad Sci USA 86: 3311–3315PubMedCrossRefGoogle Scholar
  66. Rosenstein Y, Burakoff SJ, Herrmann SH (1990) HIV-gp120 can block CD4-class II MHC-mediated adhesion. J Immunol, 144: 526–531PubMedGoogle Scholar
  67. Rudd C, Helms S, Barber EK, Schlossman SF (1989) The CD4/CD8: P56lck complex in T lymphocytes: a potential mechanism to regulate T-cell growth. Biochem Cell Biol 67: 581–589PubMedCrossRefGoogle Scholar
  68. Ruppert J, Alexander J, Snoke K, Coggeshall M, Herbert E, Menzie D, Grey HM, Sette A (1993) Effect of T-cell receptor antagonism on interaction between T cells and antigen-presenting cells and on T-cell signaling events. Proc Natl Acad Sci USA 90: 2671–2675PubMedCrossRefGoogle Scholar
  69. Ryu SE, Kwong PD, Truneh A, Porter TG, Arthos J, Rosenberg M, Dai XP, Xuong NH, Axel R, Sweet RW, Hendrickson WA (1990) Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature, 348: 419–426PubMedCrossRefGoogle Scholar
  70. Saito T, Weiss A, Miller J, Norcross MA, Germain RN (1987) Specific antigen-la activation of transfected human T cells expressing murine Ti alpha beta-human T3 receptor complexes. Nature 325: 125–130PubMedCrossRefGoogle Scholar
  71. Saizawa K, Rojo J, Janeway CA Jr (1987) Evidence for a physical association of CD4 and the CD3: α: β T cell receptor. Nature 328: 260–263PubMedCrossRefGoogle Scholar
  72. Salter RD, Benjamin RJ, Wesley PK, Buxton SE, Garrett TPJ, Clayberger C, Krensky AM, Norment AM, Littman DR, Parham P (1990) A binding site for the T-cell coreceptor CD8 on the a3 domain of HLA-A2. Nature 345: 41–46PubMedCrossRefGoogle Scholar
  73. Seed B, Aruffo A (1987) Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc Natl Acad Sci USA 84: 3365–3369PubMedCrossRefGoogle Scholar
  74. Spits H, Borst J, Terhorst C, de Vries JE (1982) The role of T cell differentiation markers in antigen-specific and lectin-dependent cellular cytotoxicity mediated by T8+ and T4+ human cytotoxic T cell clones directed at class I and class II MHC antigens. J. Immunol., 129: 1563–1569PubMedGoogle Scholar
  75. Swain SL (1981) Significance of L phenotypes: Lyt-2 antibodies block activities of T cells that recognize class I major histocompatibility complex antigens regardless of their function. Proc Natl Acad Sci U.S.A., 78: 7101–7105PubMedCrossRefGoogle Scholar
  76. Swain SL (1983) T cell subsets and the recognition of MHC class. Immunol Rev 74: 129–142PubMedCrossRefGoogle Scholar
  77. Swain SL, Dutton RW, Schwab R, Yamamoto J (1983) Xenogeneic human anti-mouse T cell responses are due to the activity of the same functional T cell subsets responsible for allospecific and major histocompatibility complex-restricted responses. J Exp Med 157: 720–729PubMedCrossRefGoogle Scholar
  78. Swain SL, Dialynas D, Fitch FW, English MJ (1984) Monoclonal antibody to L3T4 blocks the function of T cells specific for class II major histocompatibility complex antigens. J Immunol 132: 1118–1123PubMedGoogle Scholar
  79. Symer DE, Dintzis RZ, Diamond DJ, Dintzis HM (1992) Inhibition or activation of human T cell receptor transfectants is controlled by defined, soluble antigen arrays. J Exp Med 176: 1421–1430PubMedCrossRefGoogle Scholar
  80. Trowsdale J, Ragoussis J, Campbell RD, Holborn LU (1991) Map of the human MHC. Immunol Today 12: 443–446PubMedCrossRefGoogle Scholar
  81. Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212PubMedCrossRefGoogle Scholar
  82. Veillette A, Bookman MA, Horak EM, Bolen JB (1988) The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinease p56lck. Cell 55: 301–308PubMedCrossRefGoogle Scholar
  83. Veillette A, Bookman MA, Horak EM, Samelson LE, Bolen JB, (1989) Signal transduction through the CD4 receptor involves the activation of the internal membrane tyrosine-protein kinase p56lck. Nature 338: 257–259PubMedCrossRefGoogle Scholar
  84. Vignali DA, Moreno J, Schiller D, Hammerling GJ (1992) Species-specific binding of CD4 to the β2 domain of major histocompatibility complex class II molecules. J Exp Med 175: 925–932PubMedCrossRefGoogle Scholar
  85. Vignali DA, Doyle C, Kinch MS, Shin J, Strominger JL (1993) Interactions of CD4 with MHC class II molecules, T cell receptors and p56lck Philos. Trans R Soc Lond [Biol] 342: 13–24CrossRefGoogle Scholar
  86. von Boehmer H (1988) The developmental biology of T lymphocytes. Annu Rev Immunol 6: 309–326CrossRefGoogle Scholar
  87. von Boehmer H (1994) Positive selection of lymphocytes. Cell 76: 219–228CrossRefGoogle Scholar
  88. von Hoegen P, Miceli MC, Tourvieille B, Schilham M, Parnes JR (1989) Equivalence of human and mouse CD4 in enhancing antigen responses by a mouse class II-restricted T cell hybriodoma. J Exp Med 170: 1879–1886CrossRefGoogle Scholar
  89. Wang JH, Yan YW, Garrett TP, Liu JH, Rodgers DW, Garlick RL, Tarr GE, Husain Y, Reinherz EL, Harrison SC (1990) Atomic structure of a fragment of human CD4 containing two immunoglobulin- like domains. Nature 348: 411–418PubMedCrossRefGoogle Scholar
  90. Weber S, Karjalainen K (1993) Mouse CD4 binds MHC class II with extremely low affinity. Int Immunol 5: 695–698PubMedCrossRefGoogle Scholar
  91. Weber S, Traunecker A, Oliveri F, Gerhard W, Karjalainen K (1992) Specific low-affinity recogition of major histocompatibility complex plus peptide by soluble T-cell receptor. Nature 356: 793–796PubMedCrossRefGoogle Scholar
  92. Wilde DB, Marrack P, Kappler J, Dialynas DP, Fitch FW (1983) Evidence implicating L3T4 in class II MHC antigen-reactivity: monoclonal antibody GK1.5 (anti-L3T4a) blocks class II MHC antigen-specific proliferation, release of lymphokines, and binding by cloned murine helper T lymphocyte lines. J Immunol 131: 2178–2183PubMedGoogle Scholar
  93. Xu H, Littman DR (1993) A kinase-independent function of Lck in potentiating antigen-specific T cell activation. Cell 74: 633–643PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • R. König
    • 1
  • S. Fleury
    • 2
  • R. N. Germain
    • 2
  1. 1.Department of Microbiology and Immunology, Sealy Center for Molecular ScienceUniversity of Texas Medical BranchGalvestonUSA
  2. 2.Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations