Skip to main content

Tn10 and IS10 Transposition and Chromosome Rearrangements: Mechanism and Regulation In Vivo and In Vitro

  • Chapter
Transposable Elements

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 204))

Abstract

Tn10 is a composite transposon. It comprises a pair of IS10 insertion sequences located in opposite orientation flanking ~6.7 kb of unique sequences; these unique sequences encode a tetracycline resistance determinant and other determinants whose functions remain to be identified (Fig. 1A; Kleckner 1989). One of Tn10’s two IS10 elements, IS10-Right, is structurally and functionally intact and is considered to be the “wild type” IS10. IS10 encodes a single transposase protein which mediates transposition by interacting with specific sequences at two oppositely oriented IS10 (or Tn10) termini. The termini of IS10 are subtly different and are referred to as the “outside” and “inside” end, respectively, by virtue of their position in Tn10. IS10-Left is structurally intact but encodes a substantially defective transposase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adzuma K, Mizuuchi K (1989) Interaction of proteins located at a distance along DNA: mechanism of target immunity in the Mu DNA strand-transfer reaction. Cell 57: 41–47

    Article  PubMed  CAS  Google Scholar 

  • Arciszewska LK, Drake D, Craig NL (1989) Transposon Tn7 cis-acting sequences in transposition and transposition immunity. J Mol Biol 207: 35–52

    Article  PubMed  CAS  Google Scholar 

  • Arthur A, Sherratt D (1979) Dissection of the transposition process: a transposon-encoded site-specific recombination system. Mol Gen Genet 175: 267–274

    Article  PubMed  CAS  Google Scholar 

  • Arthur A, Nimmo E, Hettle S, Sherratt D (1984) Transposition and transposition immunity of transposon Tn3 derivatives having different ends. EMBO J 3: 1723–1730

    PubMed  CAS  Google Scholar 

  • Bainton R, Gamas P, Craig NL (1991) Tn7 transposition in vitro proceeds through an excised transposon intermediate generated by staggered breaks in DNA. Cell 65: 850–816

    Article  Google Scholar 

  • Bainton RJ, Kubo KM, Feng JN, Craig NL (1993) Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72: 931–943

    Article  PubMed  CAS  Google Scholar 

  • Baker TA, Luo L (1994) Identification of residues in the Mu transposase essential for catalysis. Proc Natl Acad Sci USA 91: 6654–6658

    Article  PubMed  CAS  Google Scholar 

  • Baker TA, Mizuuchi M, Savilahti H, Mizuuchi K (1993) Division of labor among monomers within the Mu transposase tetramer. Cell 74: 723–733

    Article  PubMed  CAS  Google Scholar 

  • Baker TA, Kremenstova E, Luo L (1994) Complete transposition requires four active monomers in the Mu transposase tetramer. Genes Dev 8: 2416–2428

    Article  PubMed  CAS  Google Scholar 

  • Bender J, Kleckner N (1986) Genetic evidence that Tn10 transposes by a nonreplicative mechanism. Cell 45: 801–815

    Article  PubMed  CAS  Google Scholar 

  • Bender J, Kleckner N (1992a) Tn10 insertion specificity is strongly dependent upon sequences immediately adjacent to the target site consensus sequence. Proc Natl Acad Sci USA 89: 7996–8000

    Article  PubMed  CAS  Google Scholar 

  • Bender J, Kleckner N (1992b) IS 10 transposase mutations that specifically alter target site recognition. EMBO J 11: 741–750

    PubMed  CAS  Google Scholar 

  • Bender J, Kuo J, Kleckner N (1991) Genetic evidence against intramolecular rejoining of the donor DNA molecular following IS10 transposition. Genetics 128: 687–694

    PubMed  CAS  Google Scholar 

  • Benjamin H, Kleckner N (1989) Intramolecular transposition by Tn10. Cell 59: 373–383

    Article  PubMed  CAS  Google Scholar 

  • Benjamin H, Kleckner N (1992) Tn10 transposase excises Tn10 from flanking donor DNA by flush double-strand cleavages at the transposon termini. Proc Natl Acad Sci USA 89: 4648–4652

    Article  PubMed  CAS  Google Scholar 

  • Bennett PM, Robinson MK, Richmond MH (1977) R-factors: their properties and possible control. In: Drews J, Högenauer G (eds) Topics in infectious diseases, vol 2. Springer, Berlin Heidelberg, New York, p81

    Google Scholar 

  • Berg DE (1983) Structural requirements for IS50-mediated gene transposition. Proc Natl Acad Sci USA 80: 792–796

    Article  PubMed  CAS  Google Scholar 

  • Bolland S, Kleckner N (1995) The two single strand cleavages at each end of Tn10 occur in a specific order during transposition. Proc Natl Acad Sci USA (in press)

    Google Scholar 

  • Bushman FD, Craigie R (1992) Integration of human immunodeficiency virus DNA: adduct interference analysis of required DNA sites. Proc Natl Acad Sci USA 89: 3458–3462

    Article  PubMed  CAS  Google Scholar 

  • Casadesus J, Roth JR (1989) Transcriptional occlusion of transposon targets. Mol Gen Genet 216:204–209

    Article  PubMed  CAS  Google Scholar 

  • Case CC, Roels SM, Jensen PD, Lee J, Kleckner N, Simon RW (1989) The unusual stability of the IS10 anti-sense RNA is critical for its function and is determined by the structure of its stem domain. EMBO J 13:4297–4305

    Google Scholar 

  • Chalmers RM, Kleckner N (1994) Tn10/IS10 transposase purification activation and in vitro reaction. J Biol Chem 269: 8029–8035

    PubMed  CAS  Google Scholar 

  • Chandler M, Clerger M, Galas DJ (1982) The transposition frequency of IS1-flanked transposons is a function of their size. J Mol Biol 154: 229–243

    Article  PubMed  CAS  Google Scholar 

  • Chao L, Vargas C, Spear BB, Cox EC (1983) Transposable elements as mutator genes in evolution. Nature 303: 633–635

    Article  PubMed  CAS  Google Scholar 

  • Craigie R, Mizuuchi K (1986) Role of DNA topology in Mu transposition: mechanism of sensing the relative orientation of two DNA segments. Cell 45: 793–800

    Article  PubMed  CAS  Google Scholar 

  • Craigie R, Mizuuchi M, Mizuuchi K (1984) Site-specific recognition of the bacteriophage Mu ends by the Mu A protein. Cell 39: 387–394

    Article  PubMed  CAS  Google Scholar 

  • Davis MA, Simons RW, Kleckner N (1985) Tn10 protects itself at two levels against fortuitous activation by external promoters. Cell 43: 379–387

    Article  PubMed  CAS  Google Scholar 

  • Dong A, Syvanen M (1991) Trans-acting transposase mutant from Tn5. Proc Natl Acad Sci USA 88: 6072–2076

    Article  Google Scholar 

  • Derbyshire KM, Grindley NDF (1992) Binding of the IS903 transposase to its inverted repeat in vitro. EMBO J 11:3449–3455

    PubMed  CAS  Google Scholar 

  • Derbyshire KM, Kramer M, Grindley NDF (1990) Role of instability in the cis action of the insertion sequence IS903 transposase. Proc Natl Acad Sci USA 87: 4048–4052

    Article  PubMed  CAS  Google Scholar 

  • Doak TG, Doerder FP, Jahn CL, Herrick G (1994) A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common “D35E” motif. Proc Natl Acad Sci USA 91: 942–946

    Article  PubMed  CAS  Google Scholar 

  • Engelman A, Mizuuchi K, Craigie R (1991) HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67: 1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Fayet O, Ramond P, Polard P, Prére MF, Chandler M (1990) Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences? Mol Microbiol 4: 1771–1777

    Article  PubMed  CAS  Google Scholar 

  • Flick K (1991) The relationship between element length and transposition frequency of Tn10 in vivo and in vitro. Honor thesis. Biochemical Sciences, Harvard University

    Google Scholar 

  • Foster T, Davis MA, Takeshita K, Roberts DE, Kleckner N (1981a) Genetic organization of transposon Tn10. Cell 23: 201–213

    Article  PubMed  CAS  Google Scholar 

  • Foster T, Lundblad V, Hanley-Way S, Hailing S, Kleckner N (1981b) Three Tn10-associated excision events: relationship to transposition and role of direct and inverted repeats. Cell 23: 215–227

    Article  PubMed  CAS  Google Scholar 

  • Galas DJ, Chandler M (1989) Bacterial insertion sequences. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 109–162

    Google Scholar 

  • Grinsted J, Bennett PM, Higginson S, Richmond MH (1978) Regional preference of insertion Tn501 and Tn802 into RP1 and its derivatives. Mol Gen Genet 166: 313

    PubMed  CAS  Google Scholar 

  • Hagemann AT, Craig NL (1993) Tn7 transposition creates a hotspot for homologous recombination at the transposon donor site. Genetics 133: 9–16

    PubMed  CAS  Google Scholar 

  • Hallet B, Rezsöhazy R, Mahillon J, Delcour J (1994) IS213A insertion specificity: consensus sequence and DNA bending at the target site. Mol Microbiol 14: 131–139

    Article  PubMed  CAS  Google Scholar 

  • Hailing SM, Kleckner N (1982) A symmetrical six-basepair target site sequence determines Tn10 insertion specificity. Cell 28: 155–163

    Article  Google Scholar 

  • Haniford D, Kleckner N (1994) Tn10 transposition in vivo: temporal separation of cleavages at the two transposon ends and roles of terminal basepairs subsequent to interaction of ends. EMBO J 13:3401–3411

    PubMed  CAS  Google Scholar 

  • Haniford DB, Chelouche AR, Kleckner N (1989) A specific class of IS10 transposase mutants are blocked for target site interactions and promote formation of an excised transposon fragment. Cell 59:385–394

    Article  PubMed  CAS  Google Scholar 

  • Haniford DB, Benjamin HW, Kleckner N (1991) Kinetic and structural analysis of a cleaved donor intermediate and strand transfer product in Tn10 transposition. Cell 64: 171–179

    Article  PubMed  CAS  Google Scholar 

  • Harayama S, Oguchi T, lino T (1984) Does Tn10 transpose via the cointegrate molecule? Mol Gen Genet 194:444–450

    Article  PubMed  CAS  Google Scholar 

  • Harshey RM, Getzoff ED, Baldwin DL, Miller JL, Chaconas G (1985) Primary structure of phage Mu transposase: homology to Mu repressor. Proc Natl Acad Sci USA 82: 7676–7680

    Article  PubMed  CAS  Google Scholar 

  • Huisman O, Errada PR, Signon L, Kleckner N (1989) Mutational analysis of ISIO’s outside end. EMBO J 8:2101–2109

    PubMed  CAS  Google Scholar 

  • Jain C, Kleckner N (1993) Preferential cis action of IS10 transposase depends upon its mode of synthesis. Mol Microbiol 9: 249–260

    Article  PubMed  CAS  Google Scholar 

  • Jilk RA, Makris JC, Borchardt L, Reznikoff WS (1993) Implications of Tn5-associated adjacent deletions. J Bacteriol 175: 1264–1271

    PubMed  CAS  Google Scholar 

  • Joyce CM, Steitz TA (1994) Function and structure relationships in DNA polymerases. Annu Rev Biochem 63: 777–822

    Article  PubMed  CAS  Google Scholar 

  • Junop MS, Hockman D, Haniford D (1994) Intragenic suppression of integration-defective IS10 transposase mutants. Genetics 137:343–352

    PubMed  CAS  Google Scholar 

  • Kleckner N (1979) DNA sequence analysis of Tn10 insertions: origin and role of 9-bp flanking repetitions during Tn10 translocation. Cell 16: 711–720

    Article  PubMed  CAS  Google Scholar 

  • Kleckner N (1989) Transposon Tn10. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 227–268

    Google Scholar 

  • Kleckner N (1990a) Regulating Tn10 and IS10 transposition. Genetics 124: 449–454

    PubMed  CAS  Google Scholar 

  • Kleckner N (1990b) Regulation of transposition in bacteria. Annu Rev Cell Biol 6: 297–327

    Article  PubMed  CAS  Google Scholar 

  • Kleckner N, Reichardt K, Botstein D (1979a) Inversions and deletions of theSalmonella chromosome generated by the translocatable tetracycline-resistance element Tn10. J Mol Biol 127: 89–115

    Article  PubMed  CAS  Google Scholar 

  • Kleckner N, Steele D, Reichardt K, Botstein D (1979b) Specificity of insertion by the translocatable tetracycline-resistance element Tn10. Genetics 92: 1023–1040

    PubMed  CAS  Google Scholar 

  • Kwon D, Chalmers RM, Kleckner N (1995) Structural domains of IS10 transposase and reconstitution of transposition activity from proteolytic fragments lacking an inter-domainal linker. Proc Natl Acad Sci USA (in press)

    Google Scholar 

  • Lee S, Butler D, Kleckner N (1987) Efficient Tn10 transposition into a DNA insertion hot spot in vivo requires the 5-methyl groups of symmetrically disposed thymines within the hot-spot consensus sequence. Proc Natl Acad Sci USA 84: 7876–7880

    Article  PubMed  CAS  Google Scholar 

  • Leung PC, Teplow DB, Harshey RM (1989) Interaction of distinct domains in Mu transposase with Mu DNA ends and an internal transpositional enhancer. Nature 338: 656–658

    Article  PubMed  CAS  Google Scholar 

  • Lichens-Park A, Syvanen M (1988) Cointegrate formation by IS50 requires multiple donor molecules. Mol Gen Genet 211: 244–251

    Article  PubMed  CAS  Google Scholar 

  • Machida Y, Machida H, Ohtsubo H, Ohtsubo E (1982) Factors determining frequency of plasmid co-integration mediated by insertion sequence IS1. Proc Natl Acad Sci USA 79: 277–281

    Article  PubMed  CAS  Google Scholar 

  • Mahillion J, Seurinck J, Van Rompuy L, Delcour J, Zabeau M (1985) Nucleotide sequence and structural organization of an insertion sequence element (IS231) from Bacillus thuringiensis strain Berlin 1715. EMBO J 4: 3895–3899

    Google Scholar 

  • Mizzuchi K (1992a) Transpositional recombination: mechanistic insights from studies of Mu and other elements. Annu Rev Biochem 61: 1011–1051

    Article  Google Scholar 

  • Mizuuchi K (1992b) Polynucleotidyl transfer reactions in transpositional DNA recombination. J Biol Chem 276: 21273–21276

    Google Scholar 

  • Mizuuchi K, Adzuma K (1991) Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism. Cell 66: 129–140

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi M, Mizuuchi K (1989) Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation. Cell 58: 399–408

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi M, Baker TA, Mizuuchi K (1992) Assembly of the active form of the transposase-Mu DNA complex: a critical control point in Mu transposition. Cell 70: 303–311

    Article  PubMed  CAS  Google Scholar 

  • Morisato D, Kleckner N (1984) Transposase promotes double strand breaks and single strand joints at Tn10 termini in vivo. Cell 39: 181–190

    Article  PubMed  CAS  Google Scholar 

  • Morisato D, Kleckner N (1987) Tn10 transposition and circle formation in vitro. Cell 51: 101–111

    Article  PubMed  CAS  Google Scholar 

  • Morisato D, Way JC, Kim H-J, Kleckner N (1983) Tn10 transposase acts preferentially on nearby transposon ends in vivo. Cell 32: 799–807

    Article  PubMed  CAS  Google Scholar 

  • Navas J, Garcia-Lobo JM, Leon J, Ortiz JM (1985) Structural and functional analyses of the fosfomycin resistance transposon Tn 2921. J Bacteriol 162: 1061–1067

    PubMed  CAS  Google Scholar 

  • Raleigh EA, Kleckner N (1984) Multiple IS10 rearrangements in Escherichia coli. J Mol Biol 173:437–461

    Article  PubMed  CAS  Google Scholar 

  • Reif HJ, Saedler H (1977) Chromosomal rearrangements in the gal region of E. coli K-12 after integration of IS1. In: Bukhari AI, Shapiro JA, Adhya SL (eds) DNA insertion elements, plasmids, and episomes. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 81–91

    Google Scholar 

  • Rezsöhazy R, Hallet B, Delcour J, Mahillon J (1993) The IS4 family of insertion sequences: evidence for a conserved transposase motif. Mol Microbiol 9: 1283–1295

    Article  PubMed  Google Scholar 

  • Roberts D, Kleckner N (1988) Tn10 transposition promotes RecA-dependent induction of a lambda prophage. Proc Natl Acad Sci USA 85: 6037–6041

    Article  PubMed  CAS  Google Scholar 

  • Roberts DE, Hoopes BC, McClure WR, Kleckner N (1985) IS10 transposition is regulated by DNA adenine methylation. Cell 43: 117–130

    Article  PubMed  CAS  Google Scholar 

  • Roberts D, Ascherman D, Kleckner N (1991) IS10 promotes formation of adjacent deletions at low frequency. Genetics 128: 37–43

    PubMed  CAS  Google Scholar 

  • Ross D, Swan J, Kleckner N (1979) Physical structures of Tn10-promoted deletions and inversions: role of 1400 basepair inverted repetitions. Cell 16: 721–731

    Article  PubMed  CAS  Google Scholar 

  • Sakai J, Chalmers RM, Kleckner N (1995) Identification and characterization of a precleavage synaptic complex that is an early intermediate in Tn10 transposition. EMBO J (in press)

    Google Scholar 

  • Shapiro JA (1979) Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc Natl Acad Sci USA 76: 1933–1937

    Article  PubMed  CAS  Google Scholar 

  • Shen M, Raleigh EA, Kleckner N (1987) Physical analysis of IS10-promoted transpositions and rearrangements. Genetics 116: 359–369

    PubMed  CAS  Google Scholar 

  • Signon L, Kleckner N (1995) Negative and positive regulation of Tn10/IS10-promoted recombination by IHF: two distinguishable processes inhibit transposition off of multicopy plasmid replicons and activate chromosomal events that favor evolution of new transposons. Genes Dev 9: 1123–1136

    Article  PubMed  CAS  Google Scholar 

  • Simons RW, Kleckner N (1983) Translational control of IS10 transposition. Cell 34: 683–691

    Article  PubMed  CAS  Google Scholar 

  • Simons RW, Hoopes B, McClure W, Kleckner N (1983) Three promoters near the ends of IS10: p-IN p-OUT and p-III. Cell 34: 673–682

    Article  PubMed  CAS  Google Scholar 

  • Starlinger P, Saedler H (1976) IS-elements in microorganisms. In: Compans RW, Cooper M, Koprowski H et al. (eds) Current Topics in Microbiology and Immunology, Vol. 75. Springer, Berlin Heidelberg, New York, p111

    Google Scholar 

  • Suck D, Lahm A, Oefner C (1988) Structure refined to 2A of a nicked DNA octanucleotide complex with DNase I. Nature 332: 464–468

    Article  PubMed  CAS  Google Scholar 

  • Surette MG, Chaconas G (1992) The Mu transpositional enhancer can function in trans: requirement of the enhancer for synapsis but not strand cleavage. Cell 68: 1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Surette MG, Buch SJ, Chaconas G (1987) Transpososomes: stable protein-DNA complexes involved in the in vitro transposition of bacteriophage Mu DNA. Cell 49: 253–262

    Article  PubMed  CAS  Google Scholar 

  • Surette MG, Harkness T, Chaconas G (1991) Stimulation of the Mu A protein-mediated strand cleavage reaction by the Mu B protein, and the requirement of DNA nicking for stable type 1 transpososome formation. J Biol Chem 266: 3118–3124

    PubMed  CAS  Google Scholar 

  • Thaler DS, Stahl MM, Stahl FW (1987) Tests of the double-strand-break repair model for Red-mediated recombination of phage λ and plasmid λdv. Genetics 116: 501–511

    PubMed  CAS  Google Scholar 

  • Waugh DS, Sauer RT (1993) Single amino acid substitutions uncouple the DNA binding and strand scission activities of Fokl endonuclease. Proc Natl Acad Sci USA 90: 9596–9600

    Article  PubMed  CAS  Google Scholar 

  • Way J, Kleckner N (1985) Transposition of plasmid-borne Tn10 elements does not exhibit simple length dependence. Genetics 111: 705–713

    PubMed  CAS  Google Scholar 

  • Weinert TA, Derbyshire K, Hughson FM, Grindley NDF (1984) Replicative and conservative transpositional recombination of insertion sequences. Cold Spring Harbor Symp Quant Biol 49: 251–260

    PubMed  CAS  Google Scholar 

  • Weigand TW, Reznikoff WS (1992) Characterization of two hypertransposing Tn5 mutants. J Bacteriol 174: 1229–1239

    Google Scholar 

  • Weinreich MD, Gasch A, Reznikoff WS (1994) Evidence that the cis preference of the Tn5 transposase is caused by nonproductive multimerization. Genes Dev 8: 2363–2374

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kleckner, N., Chalmers, R.M., Kwon, D., Sakai, J., Bolland, S. (1996). Tn10 and IS10 Transposition and Chromosome Rearrangements: Mechanism and Regulation In Vivo and In Vitro. In: Saedler, H., Gierl, A. (eds) Transposable Elements. Current Topics in Microbiology and Immunology, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79795-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79795-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79797-2

  • Online ISBN: 978-3-642-79795-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics