Skip to main content

Zusammenfassung

Trotz Neuentwicklung zahlreicher Zytostatika und der Verwendung neuartiger Zytostatikakombinationen, sowie der Entwicklung von durch Knochenmark- und Blutstammzeiltransplantation unterstützten Hochdosischemotherapiepro-to-kollen sind die Erfolge der traditionellen Behandlung disseminierter Tumorerkrankungen nur marginal. Der bemerkenswerte Informationsgewinn zu den bislang nur rudimentären Vorstellungen über die Molekularbiologie des Krebses hat nun die interventionelle Genetik ermuntert, konzeptionell andere und selektivere Mittel für eine erfolgreichere Tumorbehandlung verfügbar zu machen. Wir sind nunmehr Zeugen der frühen Anfänge der Gentherapie. Eine Reihe von zumeist technischen Problemen limitieren noch die breitere Anwendung der genetischen Krebsbehandlung, wobei insbesondere die noch fehlende Selektivität, Spezifität, Sensitivität sowie auch Sicherheitserwägungen eine Rolle spielen. Dennoch sind inzwischen weltweit mehr als 60 Gentherapieprotokolle genehmigt und in Durchführung. Die Gentherapiestrategien, die derzeit klinisch verfolgt werden, werden in diesem Übersichtsartikel diskutiert:

  • • die Steigerung der Tumorimmunogenität durch Insertion von Zytokingenen sowie von Genen, die die Produkte des Major-Histokompatibilitätskomplexes und Lymphozyten-kostimulatorischer Liganden kodieren,

  • • Insertion von tumorizidalen Zytokinen in Zellen mit potentieller „Homing-Fähigkeit“,

  • • die Verwendung tumorspezifischer „Prodrug-Aktivatoren“, d.h. die Insertion enzymatischer „prodrugaktivierender“ Gene, die an Promotorsysteme mit der Fähigkeit zur differentiellen (idealerweise tumorspezifischen) Transkriptions-kontrolle fusioniert sind,

  • • Genmarkierungsstrategien, welche hilfreiche neue Indikatoren für minimal residuelle oder relabierte Tumorerkrankungen sind,

  • • die Substitution von Tumorsuppressorfunktionen durch Ersatz defekter Tumorsuppressorgene und

  • • die artefizielle Repression bestimmter Genfunktionen durch Insertion von Genen, die für Gene von Interesse komplementäre (“antisense”) mRNA kodieren (z.B. Onkogene oder Zytostatikaresistenzgene).

Summary

Despite enormous efforts in new drug development and use of new drug combinations including high dose regimens supported by bone marrow and blood stem cell transplantation procedures, the gains of traditional treatment of disseminated human cancer have been marginal. Remarkable advances in our understanding of the molecular biology of cancer has spurred techniques of interventional genetics to provide new selective tools for more successful tumor treatment. We are witnessing now the early beginnings of gene therapy. There are, however, many drawbacks facing the gene therapists including selectivity, specificity, sensitivity and safety of gene transfer. Despite this, there are already over 60 protocols accepted for genetic approaches to cancer therapy worldwide. The strategies currently under clinical investigation and being discussed here, include i) the enhancement of tumor immunogenicity by insertion of cytokine genes, genes coding for products of the major histocompatibility complex, and for lymphocyte costimulatory ligands, ii) the vectoring of tumoricidal cytokines to cells that can potentially home on tumors to locally release their toxic products, iii) the use of tumor specific prodrug activators, i.e. the insertion of enzymatically prodrug-activating genes fused to promoter systems which rely on differential (idealy tumor-specific) transcription control, iv) gene-marking strategies which may provide new indicators for minimal residual and relapsed tumor disease, v) substitution of tumor suppressor functions by replacing defective tumor suppressor genes, and vi) arteficial repression of gene functions by insertion of genes encoding for complementary (antisense) mRNA to the gene of interest (e.g. oncogenes, drug resistance genes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anderson WF (1992) Human gene therapy. Science 256:808.

    Article  PubMed  CAS  Google Scholar 

  2. Asher AL, Mule JJ, Kasid A, Restifo NP, Salo JC, Reichert CM, Jaffe G, Fendly B, Kriegler M, Rosenberg SA (1991) Murine tumor cells transduced with the gene for tumor necrosis factor-α. Evidence for paracrine immune effects of tumor. necrosis factor against tumors. J Immunol 146:3227.

    PubMed  CAS  Google Scholar 

  3. Austin EA, Huber BE (1993) A first step in the development of gene therapy for colorectal carcinoma: cloning, sequencing, and expression of Escherichia coli cytosine deaminase. Mol Pharmacol 43:380.

    PubMed  CAS  Google Scholar 

  4. Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B (1990) Suppression of human colorectal carcinoma cell growth by wild-type p 53. Science 249:912.

    Article  PubMed  CAS  Google Scholar 

  5. Bangham AD (1992) Liposomes: realizing their promise. Hosp Pract Off Ed 27:51.

    PubMed  CAS  Google Scholar 

  6. Battini JL, Heard JM, Danos O (1992) Receptor choice determinants in the envelope glycoproteins of amphotropic, xenotropic and polytropic murine leukemia viruses. J Virol 66:1468.

    PubMed  CAS  Google Scholar 

  7. Belldegrun A, Tso CL, Sakata T, Duckett T, Brunda MJ, Barsky SH, Chai J, Kaboo R, Lavery RS, McBride WH, de Kernion JB (1993) Human renal carcinoma line transfected with interleukin-2 and/or Interferon α gene(s): Implications for live cancer vaccines. J Natl Canc Inst 85:207.

    Article  CAS  Google Scholar 

  8. Boris LK, Temin HM (1993) Recent advances in retrovirus vector technology. Curr Opin Genet Dev 3:102.

    Article  Google Scholar 

  9. Brenner MK, Rill DR, Moen RC, Krance RA, Mirro JJ, Anderson WF, Ihle JN (1993) Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 341:85.

    Article  PubMed  CAS  Google Scholar 

  10. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288.

    Article  PubMed  CAS  Google Scholar 

  11. Cehn L, Ashe S, Brady WA, Hellström I, Hellström KE, Ledbetter JA, McGowan P, Linsley PS (1992) Costimulation of antitumor immunity by the B7 counterreceptor for the T Lymphocyte moleculec CD28 and CTLA-4. Cell 71:1093.

    Article  Google Scholar 

  12. Colombo MP, Ferrari G, Stoppacciaro A, Parenza M, Rodolfo M, Mavilio F, Parmiani G (1991) Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. J Exp Med 173:889.

    Article  PubMed  CAS  Google Scholar 

  13. Connor J, Bannerji R, Satio S, Heston W, Fair W, Gilboa E (1993) Regression of bladder tumors in mice treated with interleukin 2 gene-modified tumor cells. J Exp Med 177:1127.

    Article  PubMed  CAS  Google Scholar 

  14. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM (1992) In vivo gene transfer with retroviral vector producer cells for treatment of experimental brain tumors. Science 256:1550.

    Article  PubMed  CAS  Google Scholar 

  15. Donahue RE, Kessler SW, Bodine D, McDonagh K, Dunbar C, Goodman S, Agricola B, Byrne E, Raffeid M, Moen R, Bacher J, Zsebo KM, Nienhuis AW (1992) Helper Virus induced T-cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 176:1125.

    Article  PubMed  CAS  Google Scholar 

  16. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulo-cyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539.

    Article  PubMed  CAS  Google Scholar 

  17. Fearon ER, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Simons JW, Karasuyama H, Vogelstein B, Frost P (1990) Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 60:397.

    Article  PubMed  CAS  Google Scholar 

  18. Gansbacher B, Zier K, Daniels B, Cronin K, Bannerki R, Gilboa E (1990) Interleukin-2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med 172:1217.

    Article  PubMed  CAS  Google Scholar 

  19. Gansbacher B, Bannerji R, Daniels B, Zier K, Cronin K, Gilboa E (1990) Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res 50:7820.

    PubMed  CAS  Google Scholar 

  20. Gao L, Wagner E, Cotten M, Agarwal S, Harris C, Romer M, Miller L, Hu PC, Curiel D (1993) Direct in vivo gene transfer to airway epithelium employing adenovirus-polylysine-DNA complexes. Hum Gene Ther 4:17.

    Article  PubMed  Google Scholar 

  21. Geller AI (1993) Herpesviruses: expression of genes in postmitotic brain cells. Curr Opin Genet Dev 3:81.

    Article  PubMed  CAS  Google Scholar 

  22. Goud B, Legrrain P, Buttin G (1988) Antibody-mediated binding of a murine ecotropoin moloney retroviral vector to human cells allows internalization but not the establishment of the proviral state. Virology 163:251.

    Article  PubMed  CAS  Google Scholar 

  23. Hock H, Dorsch M, Diamantstein T, Blankenstein T (1991) Interleukin 7 induces CD4+ T cell-dependent tumor rejection. J Exp Med 174:1291.

    Article  PubMed  CAS  Google Scholar 

  24. Hock H, Dorsch M, Kunzendorf U, Qin Z, Diamantstein T, Blankenstein T (1993) Mechanisms of rejection induced by tumor-cell targeted gene transfer of interleukin-2, interleukin-4, interleukin-7, tumor necrosis factor, or interferon γ. Proc Natl Acad Sci USA 90: 2774.

    Article  PubMed  CAS  Google Scholar 

  25. Huang HJ, Yee JK, Shew JY, Chen PL, Bookstein R, Friedmann T, Lee EY, Lee WH (1988) Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242:1563.

    Article  PubMed  CAS  Google Scholar 

  26. Jicha DL, Mule JJ, Rosenberg SA (1991) Interleukin 7 generates antitumor cytotoxic T lym-phocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy. J Exp Med 174:1511.

    Article  PubMed  CAS  Google Scholar 

  27. Karp SE, Farber A, Salo JC, Hwu P, Jaffe G, Asher AL, Shiloni E, Restifo NP, Mule JJ, Rosenberg SA (1993) Cytokine secretion by genetically modified nonimmunogenic murine fibrosarcoma. Tumor inhibition by IL-2 but not tumor necrosis factor. J Immunol 150:896.

    PubMed  CAS  Google Scholar 

  28. Kiehntopf M, Brach MA, Kirschning C, Karawajew L, Herrmann F (1994) Specific cleavage of MDR-1 mRNA by a synthetic ribozyme restores chemosensitivity in chemoresistant cancer cells. EMBO J 13:321.

    Google Scholar 

  29. Le GLSG, Robert JJ, Berrard S, Ridoux V, Stratford PL, Perricaudet M, Mallet J (1993) An adenovirus vector for gene transfer into neurons and glia in the brain. Science 259:988.

    Article  Google Scholar 

  30. McSwiggen JA, Cech TR (1989) Stereochemistry of RNA cleavage by the Tetrahymena ribozyme and evidence that the chemical step is not rate-limiting. Science 244:679.

    Article  PubMed  CAS  Google Scholar 

  31. Moolten FL (1986) Tumor chemosensitivity conferred by inserted herpes thymidin kinase genes: Paradigm for a prospective cancer control strategy. Cancer Res 46:5276.

    PubMed  CAS  Google Scholar 

  32. Moolten FL, Wells JM (1990) Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Canc Inst 82:297.

    Article  CAS  Google Scholar 

  33. Mullen CA, Killstrup M, Blaese RM (1992) Transfer of the bacterial gene of cytosine deaminase to mammalian cells confers lethal sensitivity to 5′ fluorocytosine: A negative selection system. Proc Natl Acad Sci USA 89:33.

    Article  PubMed  CAS  Google Scholar 

  34. Neda H, Wu CH, Wu GY (1991) Chemical modification of an ecotropic murine leukemia virus results in redirection of its target cell specificity. J Biol Chem 266:14143.

    PubMed  CAS  Google Scholar 

  35. Obiri NI, Hillman GG, Haas GP, Sud S, Puri RK (1993) Expression of high affinity interleukin-4 receptors on human renal cell carcinoma cells and inhibition of tumor cell growth in vitro by interleukin-4. J Clin Invest 91:88.

    Article  PubMed  CAS  Google Scholar 

  36. Ojeifo J, MacPherson A, Su N, Ryan U, Verma U, Mazumder A, Zwiebel J (1993) Endothelial cell directed cancer immunotherap: expression of human recombinant cytokine genes by endothelial cells in vitro. — Geneticallay targeteted research and theraputics: antisense and gene therapy, Keystone, Colorado, 415.

    Google Scholar 

  37. Pace U, Bockman JM, MacKay B, Goldberg AR (1993) Construction of ribozymes which discriminate between closely related mRNAs: Geneticallay targeteted research and therapeutics: antisense and gene therapy, Keystone, Colorado, 412.

    Google Scholar 

  38. Palella TD, Silverman JL, Schroll CT, Homa FL, Levine M, Kelley WH (1988) Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells. Mol Cell Biol 8:457.

    PubMed  CAS  Google Scholar 

  39. Podda S, Ward M, Himelstein A, Richardson C, de FWE, Smith L, Gottesman M, Pastan I, Bank A (1992) Transfer and expression of the human multiple drug resistance gene into live mice. Proc Natl Acad Sci USA 89:9676.

    Article  PubMed  CAS  Google Scholar 

  40. Puri RK, Ogata M, Leland P, Feldman GM, FitzGerald D, Pastan I (1991) Expression of high-affinity interleukin 4 receptors on murine sarcoma cells and receptor-mediated cytotoxicity of tumor cells to chimeric protein between interleukin 4 and Pseudomonas exotoxin. Cancer Res 51:3011.

    PubMed  CAS  Google Scholar 

  41. Rosenberg SA (1992) Gene therapy of cancer. J Am Med Assoc 268:2416.

    Article  CAS  Google Scholar 

  42. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, Karson EM, Lotze MT, Yang JC, Topalian SL (1990) Gene transfer into bumansimmunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction [see comments]. N Engl J Med 323:570.

    Article  PubMed  CAS  Google Scholar 

  43. Rosenfeld MA, Yoshimura K, Trapnell BC, Yoneyama K, Rosenthal ER, Dalemans W, Fukayama M, Bargon J, Stier LE, Stratford PL (1992) In vivo transfer of the human cystic fibrosis transmembrance conductance regulator gene to the airway epithelium. Cell 68:143.

    Article  PubMed  CAS  Google Scholar 

  44. Roux P, Jeanteur P, Piechaczyk M (1989) A versatile and potentially general approach to the targeting of specific cell types by retroviruses: Application to the infection of human cells by means of major histocompatibility complex class I and class II antigens by mouse ecotropic murine leukemia virus-derived viruses. Proc Natl Acad Sci USA 86:9079.

    Article  PubMed  CAS  Google Scholar 

  45. Shimizu K, Miyao Y, Yamada M, Ikenaka K, Nakahira K, Morita N, Nakao J, Mikoshiba K, Hayakawa T (1993) Retrovirus-mediated gene delivery and specific cytotoxicity to mouse glioma cells by glioma-specific promoters. — Geneticallay targeteted research and therapeutics: antisense and gene therapy, Keystone, Colorado, SZ 420.

    Google Scholar 

  46. Tepper RI, Pattengale PK, Leder P (1989) Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 57:503.

    Article  PubMed  CAS  Google Scholar 

  47. Townsen SE, Allison JP (1993) Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259:368.

    Article  Google Scholar 

  48. Tsai J, Gansbacher B, Tait L, Miller FR, Heppner GH (1993) Induction of antitumor Immunity by Interleukin-2 gene-transduced mouse mammary stromal fibroblasts. J Natl Canc Inst 85:546.

    Article  CAS  Google Scholar 

  49. Vile RG, Hart IR (1993) In vitro and in vivo targeting of gene expression to melanoma cells. Cancer Res 53:962.

    PubMed  CAS  Google Scholar 

  50. Watanabe Y, Kuribayashi K, Miyatake S, Nishihara K, Nakayama E, Taniyama T, Sakata T (1989) Exogenous expression of mouse interferon gamma cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity by augmented anti-tumor immunity. Proc Natl Acad Sci USA 86:9456.

    Article  PubMed  CAS  Google Scholar 

  51. Watt PC, Sawicki MP, Passaro EJ (1993) A review of gene transfer techniques. Am J Surg 165:350.

    Article  PubMed  CAS  Google Scholar 

  52. Weber JS, Rosenberg SA (1990) Effects of murine tumor class I major histocompatibility complex expression on antitumor activity of tumor-infiltrating lymphocytes. J Natl Cancer Inst 82:755.

    Article  PubMed  CAS  Google Scholar 

  53. Yang NS (1992) Gene transfer into mammalian somatic cells in vivo. Crit Rev Biotechnol 12:335.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herrmann, F., Kiehntopf, M., Brach, M.A. (1995). Ansätze zur Gentherapie. In: Beger, H.G., Manns, M.P., Greten, H. (eds) Molekularbiologische Grundlagen der Gastroenterologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79782-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79782-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59325-6

  • Online ISBN: 978-3-642-79782-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics