Skip to main content

Interaktion zwischen intestinalen Epithelzellen und immunkompetenten Zellen in der Mukosa unter normalen und pathologischen Bedingungen

  • Conference paper
Molekularbiologische Grundlagen der Gastroenterologie
  • 34 Accesses

Zusammenfassung

Die immunologischen Reaktionen im Darm sind unter physiologischen Bedingungen durch die Induktion einer protektiven Immunantwort mit humoralen und zellulären immunologischen Effektorelementen gegen pathogene Keime bzw. Antigene sowie einer Suppression der Immunantwort gegenüber der überwiegenden Mehrzahl der Nahrungsmittelantigene und der physiologischen Darmflora gekennzeichnet. Diese differenten Immunreaktionen werden entscheidend durch die Antigenpräsentation auf Antigen-präsentierenden Zellen in den Lymphfollikeln (Makrophagen, dendritische Zellen) sowie auf intestinalen Epithelzellen bestimmt. Für die Immunantwort besitzen unterschiedliche Helfer-T-Zellsubpopulationen, die eine zelluläre Immunantwort bzw. humorale Immunantwort unterstützen, eine zentrale Bedeutung. Als wesentliche Regulationsmechanismen der Induktion der Immunantwort im Darm sind in der jüngsten Zeit die molekularen Interaktionen zwischen immunkompetenten Zellen und intestinalen Epithelzellen, die durch Zelloberflächenmoleküle (MHC-Komplexe, Integrine, akzessorische Moleküle) vermittelt werden, erkannt worden. Erste Daten deuten an, daß eine überschießende, destruktive Immunantwort als Ursache für chronisch entzündliche Darmerkrankungen durch Veränderungen dieser Epithelzell-Lymphozyten-Interaktion zu verstehen ist.

Summary

The intestinal immune system has specialized functions, which are characterized by protective production of immunoglobulin (Ig) A in responses to pathological antigens and a T cell-mediated suppression of the immune response against physiological antigens such as the intestinal microflora. The induction of an immune response requires a series of complex interactions between lymphocytes and antigen presenting cells (macrophages, dendritic cells). The immune response is mediated through the selective activation of two major CD4-positive T-cell subsets, which promote on one hand cellular effector response and on the other humoral immune response. Recently published data revealed that enterocytes can function adequately to macrophages or dendritic cells as antigen-presenting cells. Unlike conventional antigen-presenting cells, epithelial cells appear to stimulate selectively suppressor T cells. In contrast, in patients with inflammatory bowel disease the antigen-depending cell-surface receptor (appropriate T-cell receptor, MHC-molecules, integrins, accessory molecules) mediated interaction between intestinal enterocytes and lymphocytes, results in activation of CD4-positive cells. These data suggest that chronic inflammatory bowel disease may be a result of a pathologic enterocyte-lymphocyte interaction, which was followed by an inappropriate increased activation of T helper-cell subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abbas AK, Williams ME, Burstein HJ, Chang TL, Bossu P, Lichtman AH (1991) Activation and functions of CD4+ T-cell subsets. Immunol Rev 123:5–22.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson JT, Cornelius JG, Jarpe AJ, Winter WE, Peck AB (1993) Insulin-dependent diabetes in the NOD mouse model. II. Beta cell destruction in autoimmune diabetes is a TH2 and not a TH1 mediated event. Autoimmunity 15:113–122.

    Article  PubMed  CAS  Google Scholar 

  3. Barnaba V, Franco A, Paroli M et al (1994) Selective expansion of cytotoxic T lymphocytes with a CD4+CD56+ surface phenotype and a T helper type 1 profile of cytokine secretion in the liver of patients chronically infected with Hepatitis B virus. J Immunol 152:3074–3087.

    PubMed  CAS  Google Scholar 

  4. Barnes PF, Lu S, Abrams JS, Wang E, Yamamura M, Modlin RL (1993) Cytokine production at the site of disease in human tuberculosis. Infect Immun 61:3482–3489.

    PubMed  CAS  Google Scholar 

  5. Bland PW, Warren LG (1986) Antigen presentation by epithelial cells or rat small intestine. I. Kinetics. Antigen specifity and blocking by anti Ia antisera. Immunology 58:1–7.

    PubMed  CAS  Google Scholar 

  6. Blumberg RS, Terhorst C, Bleicher P, McDermott FV, Allan CH, Landau SB, Trier JS, Balk SP (1991) Expression of nonpolymorpphic MHC class I-like molecule, CD1D, by human intestinal epithelial cells. J Immunol 147:2518–2524.

    PubMed  CAS  Google Scholar 

  7. Brandtzaeg P, Bjerke K (1989) Human Peyer’s patches: lymph-epithelial relationships and characteristics of immunoglobulin producing cells. Immunol Invest 18:29–45.

    Article  PubMed  CAS  Google Scholar 

  8. Bretscher P, Wei G, Menon JN, Bielefeldt-Ohmann H (1992) Establishment of a stable, cellmediated immunity that makes “susceptible” mice resistant to Leishmania major. Science 257:539–542.

    Article  PubMed  CAS  Google Scholar 

  9. Buus S, Sette A, Colon SM, Grey HM (1988) Autologous peptides occupy antigen binding site an Ia. Science 242:1045–1047.

    Article  PubMed  CAS  Google Scholar 

  10. Clerici M, Shearer GM (1993) A TH1→TH2 switch is a critical step in the etiology of HIV infection. Immunol Today 14:107–111.

    Article  PubMed  CAS  Google Scholar 

  11. De Wit D, Mechelen M van, Zanin C et al. (1993) Preferential activation of Th2 cells in chronic graft-versus-host reaction. J Immunol 150:361–366.

    PubMed  Google Scholar 

  12. Firestein GS, Roeder WD, Laxer JA, Townsend KS, Weaver CT, Han JT, Linton J, Torbett BE, Glasebrook AL (1989) A new murine CD4+ T cell subset with an unrestricted cytokine profile. J Immunol 143:518–525.

    PubMed  CAS  Google Scholar 

  13. Gajewski TF, Joyce J, Fitch FW (1989) Antiproliferative effect of IFN-gamma in immune regulation. III. Differential selection of TH1 and TH2 murine helper T lymphocyte clones using recombinant IL-2 and recombinant IFN-gamma. J Immunol 143:15–22.

    PubMed  CAS  Google Scholar 

  14. Huber SA, Polgar J, Schultheiss P, Schwimmbeck P (1994) Augmentation of pathogenesis of coxsackievirus B3 infections in mice by exogenous administration of interleukin-1 and interleukin-2. J Virol 68:195–206.

    PubMed  CAS  Google Scholar 

  15. Kaiserlian D, Vidal K, Revillard JP (1989) Murine enterocytes can present soluble antigen to specific class II restricted CD4+ T cells. J Immunol 145:1513–1516.

    Google Scholar 

  16. Kaufman DL, Clare-Salzler M, Tian J et al. (1993) Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 366:69–72.

    Article  PubMed  CAS  Google Scholar 

  17. Kühn R, Löhler J, Rennick D, Rajewski K, Müller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–274.

    Article  PubMed  Google Scholar 

  18. Li Y, Mayer L (in press) Human intestinal epithelial cell induced CD8+ T cell activation is mediated through CD8 and the activation of CD8-associated. J Exp Med.

    Google Scholar 

  19. Maggi E, Parronchi P, Manetti R et al. (1992) Reciprocal regulatory effects of IFN-gamma and IL-4 on the in vitro development of human Th1 and Th2 clones. J Immunol 148:2142–2147.

    PubMed  CAS  Google Scholar 

  20. Magilavy DB, Fitch FW, Gajewski TF (1989) Murine hepatic accesory cells support the proliferation of Thl but not Th2 helper T lymphocyte clones. J Exp Med 170:985–990.

    Article  PubMed  CAS  Google Scholar 

  21. Mason DW, Dallman M, Barclay AN (1981) Graft versus host disease induces expression of Ia antigen in rat epidermal cells and gut epithelium. Nature 293:1501.

    Article  Google Scholar 

  22. Matis LA, Glimcher LH, Paul WE, Schwartz RH (1983) Magnitude of response of histocompatiibility-restricted T cell clones is a function of the product of the concentrations of antigen and Ia molecules. Proc Natl Acad Sci (USA) 80:6019–6023.

    Article  CAS  Google Scholar 

  23. Mayer L, Shlien R (1987) Evidence for function of Ia molecules on gut epithelial cells in man. J Exp Med 166:1471–1483.

    Article  PubMed  CAS  Google Scholar 

  24. Mayer L, Eisenhardt D (1990) Lack of induction of supressor T cells by intestinal epithelial cells from patients with inflammatory bowel disease. J Clin Invest 86:1255–1260.

    Article  PubMed  CAS  Google Scholar 

  25. Mayer LD, Eisenhardt D, Salomon W, Bauer W, Pious R, Piccininni L (1991) Expression of class II molecules on intestinal epithelial cells in man: differences between normal and inflammatory bowel disease. Gastroenterology 100:3–12.

    PubMed  CAS  Google Scholar 

  26. Mosmann TR, Coffman RL (1989) Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Ann Rev Immunol 7:145–173.

    Article  CAS  Google Scholar 

  27. Neutra MR, Kraehenbuhl J-P (1992) Transepithelial transport and mucosal defense I: the role of M-cells. Trends Cell Biol 2:143–183.

    Article  Google Scholar 

  28. Owen RL, Jones AL (1974) Epithelial cell specialization within human Peyer’s patches: an ultra-structural study of intestinal lymphoid follicles. Gastroenterology 66:189.

    PubMed  CAS  Google Scholar 

  29. Panja A, Blumberg RS, Balk SB, Mayer L (1993) CD Id is involved in T-cell-intestinal epithelial cell interactions. J Exp Med 178:1115–1119.

    Article  PubMed  CAS  Google Scholar 

  30. Pearlman E, Kroeze WK, Hazlett FJ, Chen SS, Mawhorter SD, Boom WH, Kazura JW (1993) Brugia malayi: acquired resistance to microfilariae in BALB/c mice correlates with local Th2 responses. Exp Parasitol 76:200–208.

    Article  PubMed  CAS  Google Scholar 

  31. Quayle AJ, Chomarat P, Miossec P, Kjeldsen KJ, Forre O, Natvig JB (1993) Rheumatoid inflammatory T-cell clones express mostly Th1 but also Th2 and mixed (Th0-like) cytokine patterns. Scand J Immunol 38:75–82.

    Article  PubMed  CAS  Google Scholar 

  32. Robinson DS, Ying S, Taylor IK, Wangoo A, Mitchell DM, Kay AB, Hamid Q, Shaw RJ (1994) Evidence for a Th1-like bronchoalveolar T-cell subset and predominance of interferon-gamma gene activation in pulmonary tuberculosis. Am J Respir Crit Care Med 149:989–993.

    PubMed  CAS  Google Scholar 

  33. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I (1993) Ulcerative colitis-like disease in mice with a disrupted Interleukin-2 gene. Cell 75:253–261.

    Article  PubMed  CAS  Google Scholar 

  34. Schlaak J, Hermann E, Ringhoffer M et al. (1992) Predominance of Th1-type T cells in synovial fluid of patients with Yersinia-induced reactive arthritis. Eur J Immunol 22:2771–2776.

    Article  PubMed  CAS  Google Scholar 

  35. Scott P, Kaufmann SHE (1991) The role of T-cell subsets and cytokines in the regulation of infection. Immunol Today 12:346–348.

    Article  PubMed  CAS  Google Scholar 

  36. Scott P, Caspar P, Sher A (1990) Protection against Leishmania major in BALB/c mice by adoptive transfer of a T cell clone recognizing a low molecular weight antigen released by promastigotes. J Immunol 144:1075–1079.

    PubMed  CAS  Google Scholar 

  37. Sette A, Buus S, Colon SM, Miles C, Grey HM (1988) I-Ad binding peptides derived from unrelated protein antigens share common structural motif. J Immunol 141:45–48.

    PubMed  CAS  Google Scholar 

  38. Simon JC, Girolomoni G, Edelbaum D, Bergstresser PR, Cruz PDJ (1993) ICAM-1 and LFA-1 on mouse epidermal Langerhans cells and spleen dendritic cells identify disparate requirements for activation of KLH-specific CD4+ Thl and Th2 clones. Exp Dermatol 2:1338.

    Article  Google Scholar 

  39. Strober W, Ehrhardt RO (1993) Chronic intestinal inflammation: An unexpected outcome in cytokine or T cell receptor mutant mice. Cell 75:203–205.

    Article  PubMed  CAS  Google Scholar 

  40. Yi Q, Ahlberg R, Pirskanen R, Lefvert AK (1994) Acetylcholine receptor-reactive T cells in myasthenia gravis: evidence for the involvement of different subpopulations of T helper cells. J Neuroimmunol 50:177–186.

    Article  PubMed  CAS  Google Scholar 

  41. Zeitz M (1992) Der Darm als immunologisches Organ. In: Goebell H (Hrsg) Innere Medizin der Gegenwart. Urban & Schwarzenberg, München Wien Baltimore, S 53–59.

    Google Scholar 

  42. Zeitz M, Schmidt DC, Schieferdecker HL, Ullrich, R (1993) T-Zellaktivierung und Differenzierung im intestinalen Immunsystem — Bedeutung für die Pathogenese entzündlicher Darmerkrankungen. In: Bockemühl J, Zeitz M, Lux G, Ottenjahn R (Hrsg) Ökosystem Darm IV. Springer, Berlin Heidelberg New York Tokyo, S169–S174.

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stallmach, A., Köhne, G., Zeitz, M. (1995). Interaktion zwischen intestinalen Epithelzellen und immunkompetenten Zellen in der Mukosa unter normalen und pathologischen Bedingungen. In: Beger, H.G., Manns, M.P., Greten, H. (eds) Molekularbiologische Grundlagen der Gastroenterologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79782-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79782-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59325-6

  • Online ISBN: 978-3-642-79782-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics