Skip to main content

Rolle des NO bei entzündlichen Erkrankungen des Gastrointestinaltrakts

  • Conference paper
  • 34 Accesses

Zusammenfassung

Die Stickoxid(NO-)biosynthese durch Leukozyten und Gewebezellen spielt bei der Regulation von Entzündungsreaktionen eine wichtige Rolle. NO bewirkt eine Vasodilatation und hemmt die Adhäsion von Thrombozyten und Leukozyten am Endothel, wodurch eine optimale Durchblutung gewährleistet ist. Je nach Entzündungsmodell können andere Prozesse wie die Ödembildung oder die Migration der Entzündungszellen durch die NO-Biosynthese positiv oder negative beeinflußt werden. Im Netzwerk zellulärer Kommunikation wirkt NO als parakriner und autokriner Signalstoff, beeinflußt aber auch die Freisetzung anderer Mediatoren, wie die Produktion der Eicosanoide. Eine direkte Zellschädigung durch NO kann durch die Inhibition der mitochondrialen Atmung oder durch eine Schädigung der DNA hervorgerufen werden.

Bei Infektionen unterstützt das NO das Abwehrsystem durch seine antimikrobielle Wirkung. Im Rahmen septischer Verläufe kann eine überschießende NO-Produktion aber auch zur Entwicklung des hyperdynamen Schocks, der Kardiomyopathie und der Leberzellinsuffizienz beitragen. Eine Beeinträchtigung des Leberstoffwechsels durch die NO-Biosynthese dürfte auch bei lokalen Entzündungsreaktionen wie bei Hepatitiden und bei Abstoßungsreaktionen von Bedeutung sein. Bei Autoimmunerkrankungen wurde ebenfalls eine Aktivierung der NO-Biosynthese nachgewiesen. In der Patho-physiologie des Diabetes mellitus scheint NO sowohl eine Inhibition der Insulinfreisetzung als auch die direkte Zerstörung der Inselzellen hervorzurufen. Auch bei Patienten mit Colitis ulcerosa ist die NO-Produktion erhöht. Die funktionelle Bedeutung dieser Beobachtung ist allerdings noch unklar.

Summary

Biosynthesis of nitric oxide (NO) plays an important role in the regulation of inflammatory responses. NO is a potent vasodilator and inhibits the adhesion of thrombocytes and leukocytes at the endothelium, ensuring optimal perfusion of the inflammed tissue. Depending on the experimental model of inflammation other aspects such as vascular leakage or migration of leukocytes may be stimulated or suppressed by NO synthesis. Within the network of cellular communication NO acts as a paracrine and autocrine mediator, but also affects the production of other mediators, including eicosanoids and oxygen radicals. Direct toxicity of NO is based on the inhibition of mitochondrial respiration and damage of the DNA.

In the case of infection NO supports the immune system by its antimicrobial activity. However, overproduction of NO during septic courses contributes to the development of hyperdynamic shock, septic cardiomyopathy and hepatocellular insufficiency. NO biosynthesis may also interfere with metabolic performane of the liver during lokal inflammatory responses of hepatitis or rejection episodes following liver transplantation. Induction of NO biosynthesis was also demonstrated in autoimmune diseases such as diabetes mellitus type I and ulcerative colitis. In the pathophysiology of diabetes mellitus NO not only inhibits the release of insulin but may also be responsible for the destruction of pancreatic islet cells. The functional relevance of NO production in ulcerative colitis remains to be uncovered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Albina JE, Cui S, Mateo RB, Reichner JS (1993) Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol 150:5080–5085.

    PubMed  CAS  Google Scholar 

  2. Balligand JL, Ungureanu D, Kelly RA, Kobzik L, Pimentai D, Michel T, Smith TW (1993) Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 91:2314–2319.

    Article  PubMed  CAS  Google Scholar 

  3. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624.

    Article  PubMed  CAS  Google Scholar 

  4. Billiar TR, Curran RD, Stuehr DJ, West MA, Bentz BG, Simmons RL (1989) An L-arginine-dependent mechanism mediates Kupffer cell inhibition of hepatocyte protein synthesis in vitro. J Exp Med 169:1467–1472.

    Article  PubMed  CAS  Google Scholar 

  5. Boughton-Smith NK, Evans SM, Hawkey CJ, Cole AT, Balsitis M, Whittle BJ, Moncada S (1993) Nitric oxide synthase activity in ulcerative colitis and Crohn’s disease. Lancet 342:338–340.

    Article  PubMed  CAS  Google Scholar 

  6. Busse R, Mulsch A (1990) Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. Febs Lett 275:87–90.

    Article  PubMed  CAS  Google Scholar 

  7. Clark IA, Rockett KA, Cowden WB (1992) Possible central role of nitric oxide in conditions clinically similar to cerebral malaria. Lancet 340:894–896.

    Article  PubMed  CAS  Google Scholar 

  8. Corbett JA, Sweetland MA, Wang JL, Lancaster jr JJ, McDaniel ML (1993) Nitric oxide mediates cytokine-induced inhibition of insulin secretion by human islets of Langerhans. Proc Natl Acad Sci USA 90:1731–1735.

    Article  PubMed  CAS  Google Scholar 

  9. Curran RD, Ferrari FK, Kispert PH, Stadler J, Stuehr DJ, Simmons RL, Billiar TR (1991) Nitric oxide and nitric oxide-generating compounds inhibit hepatocyte protein synthesis. FASEB J 5:2085–2092.

    PubMed  CAS  Google Scholar 

  10. Denis M (1991) Tumor necrosis factor and granulocyte macrophage-colony stimulation factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent M avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates. J Leukoc Biol 49:380–387.

    PubMed  CAS  Google Scholar 

  11. Ferreira SH, Duarte ID, Lorenzetti BB (1991) Molecular base of acetylcholine and morphine analgesia. Agents Actions [Suppl]32:101–106.

    Google Scholar 

  12. Gopalakrishna R, Chen ZH, Gundimeda U (1993) Nitric oxide and nitric oxidegenerating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. J Biol Chem 268:27180–27185.

    PubMed  CAS  Google Scholar 

  13. Green SL, Nacy CA, Meltzer MS (1991) Cytokine-induced synthesis of nitrogen oxides in macrophages: a protective host response to Leishmania and other intracellular pathogens. J Leukoc Biol 50:93–103.

    PubMed  CAS  Google Scholar 

  14. Harbrecht BG, Billiar TR, Stadler J, Demetris AJ, Ochoa JB, Curran RD, Simmons RL (1992) Nitric oxide synthesis serves to reduce hepatic damage during acute murine endotoxemia. Crit Care Med 20:1568–1574.

    Article  PubMed  CAS  Google Scholar 

  15. Hibbs JB jr, Taintor RR, Vavrin Z (1987) Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235:473–476.

    Article  PubMed  CAS  Google Scholar 

  16. Hollenberg SM, Cunnion RE, Zimmerberg J (1993) Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to catecholamines in septic rats. Am J Physiol 264:H660–H663.

    PubMed  CAS  Google Scholar 

  17. Hutcheson IR, Whittle BJR, Boughton-Smith NK (1990) Role of nitric oxide in maintaining vascular integrity in endotoxin-induced acute intestinal damage in the rat. Br J Pharmacol 101:815–820.

    PubMed  CAS  Google Scholar 

  18. Kanner J, Harel S, Granit R (1992) Nitric oxide, an inhibitor of lipid oxidation by lipoxygenase, cyclooxygenase and hemoglobin. Lipids 27:46–49.

    Article  PubMed  CAS  Google Scholar 

  19. Kaplan SS, Billiar T, Curran RD, Zdziarski UE, Simmons RL, Basford RE (1989) Inhibition of chemotaxis NG-monomethyl-L-arginine: a role for cyclic GMP Blood 74:1885–1887.

    CAS  Google Scholar 

  20. Karupiah G, Xie QW, Buller RM, Nathan C, Duarte C, MacMicking JD (1993) Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science 261:1445–1448.

    Article  PubMed  CAS  Google Scholar 

  21. Kilbourn RG, Belloni P (1990) Endothelial cell production of nitrogen oxides in response to interferon gamma in combination with tumor necrosis factor, interleukin-1, or endotoxin. J Natl Cancer Inst 82:726–772.

    Article  Google Scholar 

  22. Kirk SJ, Regan MC, Barbul A (1990) Cloned murine T lymphocytes synthesize a molecule with the biological characteristics of nitric oxide. Biochem Biophys Res Commun 173:660–665.

    Article  PubMed  CAS  Google Scholar 

  23. Kolb H, Kolb BV (1992) Nitric oxide: a pathogenetic factor in autoimmunity. Immunol Today 13:157–160.

    Article  PubMed  CAS  Google Scholar 

  24. Kubes P (1992) Nitric oxide modulates epithelial permeability in the feline small intestine. Am J Physiol 262:G1138–1142.

    PubMed  CAS  Google Scholar 

  25. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88:4651–4655.

    Article  PubMed  CAS  Google Scholar 

  26. Kubes P, Kanwar S, Niu X-F, Gaboury JP (1993) Nitric oxide synthesis inhibition induces leukocyte adhesion via superoxide and mast cells. FASEB J 7:1293–1299.

    PubMed  CAS  Google Scholar 

  27. Lancaster JR jr, Langrehr JM, Bergonia HA, Murase N, Simmons RL, Hoffman RA (1992) EPR detection of heme and nonheme iron-containing protein nitrosylation by nitric oxide during rejection of rat heart allograft. J Biol Chem 267:10994–10998.

    PubMed  CAS  Google Scholar 

  28. Lander HM, Sehajpal PK, Novogrodsky A (1993) Nitric oxide signaling: a possible role for G proteins. J Immunol 151:7182–7187.

    PubMed  CAS  Google Scholar 

  29. Langrehr JM, Murase N, Markus PM, Cai X, Neuhaus P, Schraut W, Simmons RL, Hoffman RA (1992) Nitric oxide production in host-versus-graft and graft-versus-host reactions in the rat. J Clin Invest 90:679–683.

    Article  PubMed  CAS  Google Scholar 

  30. Langrehr JM, Hoffman RA, Lancaster jr JJ, Simmons RL (1993) Nitric oxide — a new endogenous immunomodulator. Transplantation 55:1205–1212.

    Article  PubMed  CAS  Google Scholar 

  31. Lepoivre M, Chenais B, Yapo A, Lemaire G, Thelander L, Tenu JP (1990) Alterations of ribonucleotide reductase activity following induction of the nitritegenerating pathway in adenocarcinoma cells. J Biol Chem 265:14143–14149.

    PubMed  CAS  Google Scholar 

  32. Lukic ML, Stosic GS, Ostojic N, Chan WL, Liew FY (1991) Inhibition of nitric oxide generation affects the induction of diabetes by streptozocin in mice. Biochem Biophys Res Commun 178:290–913.

    Article  Google Scholar 

  33. Malawista SE, Montgomery RR, van BG (1992) Evidence for reactive nitrogen intermediates in killing of staphylococci by human neutrophil cytoplasts. A new microbicidal pathway for polymor-phonuclear leukocytes. J Clin Invest 90:631–636.

    Article  PubMed  CAS  Google Scholar 

  34. Miller MJ, Sadowska KH, Chotinaruemol S, Kakkis JL, Clark DA (1993) Amelioration of chronic ileitis by nitric oxide synthase inhibition. J Pharmacol Exp Ther 264:11–16.

    PubMed  CAS  Google Scholar 

  35. Nathan CF, Hibbs jr JB (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3:65–70.

    Article  PubMed  CAS  Google Scholar 

  36. Nava ER, Palmer RM, Moncada S (1992) The role of nitric oxide in endotoxic shock: effects of NG-monomethyl-L-arginine. J Cardiovasc Pharmacol 20[Suppl 12]:S132–134.

    PubMed  CAS  Google Scholar 

  37. Nüssler AK, Billiar TR (1993) Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol 54:171–178.

    PubMed  Google Scholar 

  38. Nüssler A, Drapier JC, Renia L, Pied S, Miltgen F, Gentilini M, Mazier D (1991) L-arginine-dependent destruction of intrahepatic malaria parasites in response to tumor necrosis factor and/ or interleukin 6 stimulation. Eur J Immunol 21:227–230.

    Article  PubMed  Google Scholar 

  39. Nüssler AK, Heeckt PF, Stadler J (1994) Metabolismus und Funktion von Nitric oxide in der Leber. Z Gastroenterol 32:24–30.

    PubMed  Google Scholar 

  40. Oyanagui Y, Sato S (1993) Histamine paw edema of mice was increased and became H2-antagonist sensitive by co-injection of nitric oxide forming agents, but serotonin paw edema was decreased. Life Sci 52:64.

    Article  Google Scholar 

  41. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526.

    Article  PubMed  CAS  Google Scholar 

  42. Radomski MW, Palmer RM, Moncada S (1990) An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 87:5193–5197.

    Article  PubMed  CAS  Google Scholar 

  43. Radons J, Heller B, Bürkle A, Hartmann B, Rodriguez ML, Kröncke CD, Burkart V, Kolb H (1994) Nitric oxide toxicity in islet cells involves poly (ADP-ribose) polymerase activation and concomitant NAD + depletion. Biochem Biophys Res Commun 199:1270–1277.

    Article  PubMed  CAS  Google Scholar 

  44. Rossaint R, Falke KJ, Lopez F, Slama K, Pison U, Zapol WM (1993) Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 328:399–405.

    Article  PubMed  CAS  Google Scholar 

  45. Sanders KM, Ward SM (1992) Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am J Physiol 262:G379–392.

    PubMed  CAS  Google Scholar 

  46. Schmidt HH, Seifert R, Bohme E (1989) Formation and release of nitric oxide from human neutrophils and HL-60 cells induced by a chemotactic peptide, platelet activating factor and leukotriene B4. Febs Lett 244:357–360.

    Article  PubMed  CAS  Google Scholar 

  47. Snyder SH (1992) Nitric oxide: first in a new class of neurotransmitters. Science 257:494–496.

    Article  PubMed  CAS  Google Scholar 

  48. Stadler J, Barton D, Beil-Moeller H, Diekmann S, Hierholzer C, Erhard W, Heidecke CD (1995) Hepatocyte nitric oxide biosynthesis inhibits glucose output and competes with urea synthesis for L-arginine. Am J Physiol. 268:G183–188.

    PubMed  CAS  Google Scholar 

  49. Stadler J, Billiar TR, Curran RD, McIntyre LA, Georgescu HI, Simmons RL, Evans CH (1991) Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide. J Immunol 147:3915–3920.

    PubMed  CAS  Google Scholar 

  50. Stadler J, Billiar TR, Curran RD, Stuehr DJ, Ochoa JB, Simmons RL (1991) Effect of exogenous and endogenous nitric oxide on mitochondrial respiration of rat hepatocytes. Am J Physiol 260:C910–916.

    PubMed  CAS  Google Scholar 

  51. Stadler J, Harbrecht BG, Di Silvio M, Curran RD, Jordan ML, Simmons RL, Billiar TR (1993) Endogenous nitric oxide inhibits the synthesis of cyclooxygenase products and interleukin-6 by rat Kupffer cells. J Leukoc Biol 53:165–172.

    PubMed  CAS  Google Scholar 

  52. Stadler J, Trockfeld J, Schmalix WA, Brill T, Doehmer J (1994) Inhibition of cytochromes P4501A by nitric oxide. Proc Natl Acad Sci USA 91:3559–3563.

    Article  PubMed  CAS  Google Scholar 

  53. Stefanovic-Racic M, Stadler J, Evans CH (1993) Nitric oxide and arthritis. Arthritis Rheum 36:1036–1044.

    Article  PubMed  CAS  Google Scholar 

  54. Stuehr DJ, Marletta MA (1985) Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 82:7738–7742.

    Article  PubMed  CAS  Google Scholar 

  55. Stuehr DJ, Nathan CF (1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169:1543–1555.

    Article  PubMed  CAS  Google Scholar 

  56. Vane JR, Anggard EE, Botting RM (1990) Regulatory functions of the vascular endothelium. N Engl J Med 323:27–36.

    Article  PubMed  CAS  Google Scholar 

  57. Vane JR, Mitchell JA, Appleton I, Tomlinson A, Bishop-Bailey D, Croxtall J, Willoughby DA (1994) Inducible isoforms of cyclooxygenase and nitric oxide synthase in inflammation. Proc Natl Acad Sci USA 91:2046–2050.

    Article  PubMed  CAS  Google Scholar 

  58. Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H (1990) Tetrahydrobiopterin-dependent formation of nitrite and nitrate in murine fibroblasts. J Exp Med 172:1599–1607.

    Article  PubMed  CAS  Google Scholar 

  59. Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS, Keefer LK (1991) DNA deaminating ability and genotoxicity of nitric oxide and progenitors. Science 254:1001–1003.

    Article  PubMed  CAS  Google Scholar 

  60. Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB (1993) Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA 90:9813–9817.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stadler, J. (1995). Rolle des NO bei entzündlichen Erkrankungen des Gastrointestinaltrakts. In: Beger, H.G., Manns, M.P., Greten, H. (eds) Molekularbiologische Grundlagen der Gastroenterologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79782-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79782-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59325-6

  • Online ISBN: 978-3-642-79782-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics