Advertisement

Stability of Two- and Three-Dimensional Time-Dependent Flows with Locally Uniform Strain Rates

  • A. D. D. Craik
Part of the IUTAM Symposia book series (IUTAM)

Summary

Most steady flows with constant vorticity and elliptical streamlines are known to be unstable. These, and certain axisymmetric time-periodic flows, can be analysed by Floquet theory. However, Hoquet theory is inapplicable to other time-periodic flows that yield disturbance equations containing a quasi-periodic, rather than periodic, function. A practical method for surmounting this difficulty was recently given by Bayly, Holm & Lifshitz [11]: we outline this and describe further flows that can be so treated.

Key words

flow instability Floquet theory quasi-periodic potentials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kelvin, Lord: Phil. Mag. 24 (5) (1887) 188–196.Google Scholar
  2. [2]
    Lagnado, R.R., Phan-Thien, N. & Leal, L.G.: Phys. Fluids 27 (1984) 1094–1101.CrossRefMATHGoogle Scholar
  3. [3]
    Craik, A.D.D. & Criminate, W.O.: Proc. R. Soc. Lond. A406 (1986) 13–26.Google Scholar
  4. [4]
    Bayly, B.J.: Phys. Rev. Lett. 57 (1986) 2160–2171.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Craik, A.D.D.: J. Fluid Mech. 198 (1989) 275–292.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    Waleffe, F.: Phys. Fluids A2 (1990) 76–80.MathSciNetGoogle Scholar
  7. [7]
    Miyazaki, T. & Fukumoto, Y.: Phys. Fluids A4 (1992) 2515–2522.Google Scholar
  8. [8]
    Craik, A.D.D. & Allen, H.R.: J. Fluid Mech. 234 (1992) 613–627.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    Mansour, N.N. & Lundgren, T.S.: Phys. Fluids A2 (1990) 2089–2091.Google Scholar
  10. [10]
    Kerswell, R.R.: Geophys. Astrophys. Fluid Dyn. 72 (1993) 107–144.CrossRefGoogle Scholar
  11. [11]
    Bayly, B.J., Holm, D.D. & Lifshitz, A.: ‘Stability of elliptical vortex columns.’ Preprint (1994).Google Scholar
  12. [12]
    Johnson, R. & Moser, J.: Commun. Math. Phys. 84 (1982) 403–438.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    Simon, B.: Advances Appl. Mech. 3 (1982) 463–490.MATHGoogle Scholar
  14. [14]
    Kida, S.: J. Phys. Soc. Japan 50 (1981) 3517–3520.CrossRefGoogle Scholar
  15. [15]
    Gledzer, E.B. & Ponomarev, V.M.: J. Fluid Mech. 240 (1992) 1–30.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    Malkus, W.V.R.: Science 160 (1968) 259–264.CrossRefGoogle Scholar
  17. [17]
    Malkus, W.V.R.: Geophys. Astrophys. Fluid Dyn. 48 (1989) 123–143.CrossRefGoogle Scholar
  18. [18]
    Vladimirov, V.A., Ribak, L.Ya. & Tarasov, V.: Prikl. Mech. Tekh. Fiz. 3 (1983) 61–69.Google Scholar
  19. [19]
    Manasseh, R.: J. Fluid Mech. 243 (1992) 261–296.CrossRefGoogle Scholar
  20. [20]
    Lebowitz, N.R. & Lifshitz, A.: ‘Short-wavelength instabilities of Riemann ellipsoids.’ Preprint (1994).Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1995

Authors and Affiliations

  • A. D. D. Craik
    • 1
  1. 1.School of Mathematical & Computational SciencesUniversity of St.AndrewsFife,Scotland, UK

Personalised recommendations