Numerical and Experimental Investigation of the K-Regime of Boundary-Layer Transition

  • U. Rist
  • Y. S. Kachanov
Part of the IUTAM Symposia book series (IUTAM)

Summary

One particular case of K-type transition has been investigated using hot-wire measurements and spatial direct numerical simulation (DNS). Detailed quantitative comparisons of the results of both approaches showed very good agreement of the spatial disturbance development, the disturbance spectra, the instantaneous velocity traces, and the local frequency-spanwise-wave-number spectra. Indications for a direct generation of three-dimensional modes as higher harmonics of the fundamental modes were found. A closer look at the phase speeds of these modes, however, revealed that weak-nonlinear interactions are only initially appropriate to describe the flow, they fail when local events dominate, like, for example the formation of small-scale vortices in the boundary layer. The investigation of the later stages showed that the hot-wire ‘spike’-signals are connected with small ring-like vortices.

Keywords

Vortex Convection Soliton Vorticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Klebanoff, P.S., Tidstrom, K.D. and Sargent, L.M.: The three-dimensional nature of boundary-layer instability, J. Fluid Mech. 12 (1962) 1–34.CrossRefMATHGoogle Scholar
  2. [2]
    Craik, A.D.D.: Nonlinear evolution and breakdown in unstable boundary layers, J. Fluid Mech. 99 (1980) 247–265.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    Nishioka, M., Asai, M. and Eda S.: An experimental investigation of the secondary instability, Laminar-Turbulent Transition (eds. R. Eppler and H. Fasel), Springer, Berlin, Heidelberg (1980) 37–46.CrossRefGoogle Scholar
  4. [4]
    Borodulin, V.I. and Kachanov, Y.S.: Role of the mechanism of local secondary instability in K-breakdown of boundary layer. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk. 18 (1988) 65–77 (in Russian). (Transl. Soviet J. Appl. Phys. 3(2) (1989) 70–81.)Google Scholar
  5. [5]
    Kachanov, Y.S.: Physical Mechanisms of laminar-boundary-layer transition, Ann. Rev. Fluid Mech. 26 (1994), 411–482.CrossRefMathSciNetGoogle Scholar
  6. [6]
    Kachanov, Y.S., Kozlov, V.V., Levchenko, V.Y. and Ramazanov, M.P.: On nature of K-breakdown of a laminar boundary-layer; new experimental data. Laminar-Turbulent Transition (ed. V.V. Kozlov), Springer, New York (1986) 61–73.Google Scholar
  7. [7]
    Kachanov, Y.S.: On the resonant nature of the breakdown of a laminar boundary layer. J. Fluid Mech. 184 (1987) 43–74.CrossRefGoogle Scholar
  8. [8]
    Rist, U.: Numerische Untersuchung der räumlichen, dreidimensionalen Störungsentwicklung beim Grenzschicht Umschlag. Dissertation Universität Stuttgart (1990).Google Scholar
  9. [9]
    Rist, U. and Fasel, H.: Direct numerical simulation of controlled transition in a flat-plate boundary layer, J. Fluid Mech. (1985).Google Scholar
  10. [10]
    Fasel, H.F., Rist, U. and Konzelmann, U.: Numerical investigation of the three-dimensional development in boundary-layer transition, AIAA J. 28 (1990) 29–37.CrossRefMathSciNetGoogle Scholar
  11. [11]
    Kloker, M., Konzelmann, U. and Fasel, H.: Outflow boundary conditions for spatial Navier-Stokes simulations of transitional boundary layers, AIAA J. 31 (1993) 620–628.CrossRefGoogle Scholar
  12. [12]
    Kloker, M.: Direkte Numerische Simulation des laminar-turbulenten Strömungsumschlages in einer stark verzögerten Grenzschicht, Dissertation Universität Stuttgart (1993).Google Scholar
  13. [13]
    Kachanov, Y.S., Ryzhov, O.S. and Smith, F.T.: Formation of solitons in transitional boundary layers: theory and experiments. J. Fluid Mech. 251 (1993) 273–297.CrossRefMathSciNetGoogle Scholar
  14. [14]
    Falco, R.E.: Coherent motions in the outer region of turbulent boundary layers. Phys. Fluids Suppl. 20(10) (1977) S124–132.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • U. Rist
    • 1
  • Y. S. Kachanov
    • 2
  1. 1.Institut für Aerodynamik und GasdynamikUniversity of StuttgartStuttgartGermany
  2. 2.Institute of Theoretical and Applied MechanicsNovosibirskRussia

Personalised recommendations