Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 122))

Abstract

Ever-increasing human activity across the tropical landscape inevitably results in the loss of biodiversity at some spatial scales (Wilson 1988; Whitmore and Sayer 1992). For example, it is well known that the replacement of diverse tropical forests with less species-rich systems results in the loss of genetic resources and of new, potentially useful plants and animals. Global-scale changes are also likely to have an impact on biodiversity, both directly through physiological responses to climate change, and indirectly through changes in the physical environment, ecosystem processes, and species interactions (Harte et al. 1992). To better determine the outcome of human-induced changes to tropical forests, we must understand the role of biodiversity in mediating ecosystem-level processes. This chapter examines the relationship between biodiversity and biogeochemical cycles in tropical forests. We begin by defining appropriate terms for biodiversity and biogeochemistry and then build a conceptual framework for linking species and ecosystem processes. Finally, we discuss the empirical evidence documenting the effects of changes in biodiversity on energy processing and nutrient cycling in ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashton PS (1977) A contribution of rain forest research to evolutionary theory. Ann Mo Bot Gard 64:694–705.

    Article  Google Scholar 

  • Benzing DH (1990) Vascular epiphytes. Cambridge Univ Press, Cambridge.

    Book  Google Scholar 

  • Bloomfield J, Vogt KA, Vogt DJ (1993) Decay rate and substrate quality of fine roots and foliage of two tropical tree species in the Luquillo Experimental Forest, Puerto Rico. Plant Soil 150:233–245.

    Article  CAS  Google Scholar 

  • Brady NC (1990) The nature and properties of soils. Macmillan, New York.

    Google Scholar 

  • Cuevas E, Medina E (1988) Nutrient dynamics within Amazonian forests 2. Fine root growth nutrient availability and leaf litter decomposition Oecologia 76:222–235.

    Google Scholar 

  • Cuevas E, Brown S, Lugo AE (1991) Above-and belowground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest. Plant Soil 135:257–268.

    Article  Google Scholar 

  • DeAngelis DL, Mulholland PJ, Palumbo AV, Steinman AD, Huston MA, Elwood JW (1992) Nutrient dynamics and food-web stability. Annu Rev Ecol Syst 20:71–95.

    Article  Google Scholar 

  • Edwards PJ, Grubb PJ (1982) Studies of mineral cycling in a montane rain forest in New Guinea IV Soil characteristics and the division of mineral elements between the vegetation and soil. J Ecol 70:649–666.

    Article  CAS  Google Scholar 

  • Ehleringer JR, Field CB (eds) (1993) Scaling physiological processes. Academic Press, San Diego.

    Google Scholar 

  • Ewel JJ, Berish C, Brown B, Price N, Raich J (1981) Slash and burn impacts on a Costa Rican wet forest site. Ecology 62:816–829.

    Article  CAS  Google Scholar 

  • Ewel JJ, Mazzarino MJ, Berish CW (1991) Tropical soil fertility changes under monocultures and successional communities of different structure. Ecol Appl 1:289–302.

    Article  Google Scholar 

  • Frangi JL, Lugo AE (1985) Ecosystem dynamics of a subtropical floodplain forest. Ecol Monogr 55:351–369.

    Article  Google Scholar 

  • Garcia-Montiel DC, Scatena FN (1994) The effect of human activity on the structure and composition of a tropical forest in Puerto Rico. For Ecol Manage 63:57–78.

    Article  Google Scholar 

  • Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 75:1–34.

    Article  Google Scholar 

  • Gentry AH Dodson C (1987) Contribution of nontrees to species richness of a tropical rain forest. Biotropica 19:149–156.

    Article  Google Scholar 

  • Greenland DJ, Kowal JML (1960) Nutrient content of the moist tropical forest of Ghana. Plant Soil 12:154–174.

    Article  CAS  Google Scholar 

  • Grubb PJ (1977) Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu Rev Ecol Syst 8:83–107.

    Article  CAS  Google Scholar 

  • Harte J, Torn M, Jensen D (1992) The nature and consequences of indirect linkages between climate change and biological diversity. In: Peters RL, Lovejoy TJ (eds) Global warming and biological diversity. Yale Univ Press, New Haven, pp 325–343.

    Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339.

    Article  PubMed  CAS  Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, San José, Costa Rica.

    Google Scholar 

  • Huston M (1979) A general hypothesis of species diversity. Am Nat 113:81–101.

    Article  Google Scholar 

  • Huston M (1980) Soil nutrients and tree species richness in Costa Rican forests. J Biogeogr 7:147–157.

    Article  Google Scholar 

  • Jenny H (1980) The soil resource. Springer, Berlin Heidelberg New York.

    Book  Google Scholar 

  • Johnston MH (1992) Soil-vegetation relationships in a tabonuco forest community in the Luquillo Mountains of Puerto Rico. J Trop Ecol 8:253–263.

    Article  Google Scholar 

  • Jordan CF (1985) Nutrient cycling in tropical forest ecosystems. Wiley, New York.

    Google Scholar 

  • Jordan CF (1991) Nutrient cycling processes and tropical forest management. In: Gómez-Pompa A, Whitmore TC, Hadley M (eds) Rain forest regeneration and management. MAB series, vol 6. Parthenon, New Jersey, pp 159–180.

    Google Scholar 

  • Klinge H (1973) Root mass estimation in lowland tropical rain forests of central Amazonia, Brazil. 1. Fine root masses of a pale yellow latosol and a giant humus podzol. Trop Ecol 14:29–38.

    Google Scholar 

  • Klinge H (1975) Root mass estimation in lowland tropical rain forests of central Amazonia, Brazil. 3 Nutrients in fine roots from giant humus podzols. Trop Ecol 16:28–38.

    CAS  Google Scholar 

  • Klinge H, Herrera H (1978) Biomass studies in Amazonia Caatinga forest in southern Venezuela 1. Standing crop of composite root mass in selected stands. Trop Ecol 19:93–101.

    Google Scholar 

  • Lawton JH, Brown VK (1993) Redundancy in ecosystems. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin Heidelberg New York, pp 255–270.

    Google Scholar 

  • Lugo AE (1987) Stress and ecosystems. In: Thorp JH, Gibbons JW (eds) Energy and environmental stress in aquatic ecosystems. DOE Symp Ser (Conf-771114) Nat Tech Inf Serv Va, pp 62-101.

    Google Scholar 

  • Lugo AE (1992) Comparison of tropical tree plantations with secondary forests of similar age. Ecol Monogr 62:1–41.

    Article  Google Scholar 

  • Lugo AE, Brown S (1981) Tropical lands: popular misconceptions. Mazingara 5:10–19.

    Google Scholar 

  • Lugo AE, Brown S (1991) Comparing tropical and temperate forests. In: Cole, JC, Lovett GM, Findlay SEG (eds) Comparative analysis of ecosystems: patterns, mechanisms, and theories. Springer, Berlin Heidelberg New York, pp 319–330.

    Google Scholar 

  • Lugo AE, Scatena FN (1992) Epiphytes and climate change research in the Caribbean: a proposal. Selbyana 13:123–130.

    Google Scholar 

  • Lyford WH (1969) The ecology of an elfin forest in Puerto Rico. 7 Soil, root, and earthworm relationships. J Arnold Arbor 50:210–224.

    Google Scholar 

  • Mckey DP, Waterman G, Gartlan JS, Struhsaker TT (1978) Phenolic content of vegetation in two African rain forests: ecological implications. Science 202:61–64.

    Google Scholar 

  • Montagnini F, Sancho F (1990) Impacts of native trees on tropical soils: a study in the Atlantic lowlands of Costa Rica. Ambio 19:386–390.

    Google Scholar 

  • Nadkarni NM (1984) Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica 16:249–256.

    Article  Google Scholar 

  • Nadkarni NM, Matelson TJ (1992) Biomass and nutrient dynamics of epiphytic litterfall in a neotropical montane forest, Costa Rica. Biotropica 24:24–30.

    Article  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270.

    Article  PubMed  CAS  Google Scholar 

  • Page AL (ed) (1982) Part 2 Chemical and microbiological properties. Am Soc Agron, Madison, Wisconsin.

    Google Scholar 

  • Pocs T (1982) Tropical forest bryophytes. In Smith AJE (ed) Bryophyte ecology. Chapman and Hall, London, pp 59–104.

    Chapter  Google Scholar 

  • Proctor J, Anderson JM, Vallack HW (1983) Comparative studies on forests, soils, and litterfall at four altitudes on Gunung Mulu, Sarawak. Malays For 46:60–76.

    Google Scholar 

  • Proctor J, Lee YF, Langley AM, Munro WRC, Nelson T (1988) Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. I. Environment, forest structure, and floristics. J Ecol 76:320–340.

    Article  Google Scholar 

  • Radulovich R, Sollins P (1991) Nitrogen and phosphorus leaching in zero-tension drainage from a humid tropical soil. Biotropica 23:231–232.

    Article  Google Scholar 

  • Runge M (1983) Physiology and ecology of nitrogen nutrition. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology III. Responses to the chemical and biological environment. Springer, Berlin Heidelberg New York, pp 163–200.

    Chapter  Google Scholar 

  • Sanchez PA (1976) Properties and management of soils in the tropics. Wiley, New York.

    Google Scholar 

  • Sanford RL (1985) Root ecology of mature and successional Amazon forests. PhD Diss, Univ Calif, Berkeley.

    Google Scholar 

  • Silver WL (1994) Is nutrient availability related to plant nutrient use in humid tropical forests? Oecologia 98:336–343.

    Article  Google Scholar 

  • Silver WL, Vogt KA (1993) Fine root dynamics following single and multiple disturbances in a subtropical wet forest ecosystem. J Ecol 81:729–738.

    Article  Google Scholar 

  • Silver WL, Scatena FN, Johnson AH, Siccama TG, Sanchez MJ (1994) Nutrient availability in a montane rain forest in Puerto Rico: spatial patterns and methodological considerations. Plant Soil 164:129–145.

    Article  CAS  Google Scholar 

  • Silver WL, Browns, Lugo AZ (1996) Effects of changes in biodiversity on ecosystem functions in tropical forests. Con Bio 10:17–24.

    Article  Google Scholar 

  • Stark N (1971) Nutrient cycling pathways and litter fungi. BioScience 22:355–360.

    Article  Google Scholar 

  • Stark N, Jordan CF (1978) Nutrient retention by the root mat of an Amazonian rain forest. Ecology 59:434–437.

    Article  CAS  Google Scholar 

  • Stark N, Spratt M (1977) Root biomass and nutrient storage in rain forest oxisols near San Carlos de Río Negro. Trop Ecol 18:1–9.

    CAS  Google Scholar 

  • Sugden AM, Robins RJ (1979) Aspects of the ecology of vascular epiphytes in Colombian cloud forests. 1. The distribution of epiphytic flora. Biotropica 11:173–188.

    Article  Google Scholar 

  • Swift MJ (1986) Report of the third workshop on the decade of the tropics. Tropical Soil Biology and Fertility Programme. Biol Int Spec Issue, pp 13-68.

    Google Scholar 

  • Swift MJ, Sanchez PA (1984) Biological management of tropical fertility for sustained productivity. Nat Res 20:2–10.

    Google Scholar 

  • Tanner EVJ (1977) Four montane rain forests of Jamaica: a quantitative characterization of the floristics, the soils and the foliar mineral levels, and a discussion of the interrelations. J Ecol 65:883–918.

    Article  CAS  Google Scholar 

  • Tilman GD (1982) Resource competition and community structure. Princeton Univ Press, New Jersey.

    Google Scholar 

  • Tilman GD, Downing JA (1994) Biodiversity and stability in grasslands. Nature 367:363–365.

    Article  Google Scholar 

  • Van Cleve K, Viereck LA, Schlentner RL (1971) Accumulation of nitrogen in alder (Alnus) ecosystems near Fairbanks, Alaska. Arct Alp Res 3:101–114.

    Article  Google Scholar 

  • Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572.

    Article  Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology 65:285–298.

    Article  CAS  Google Scholar 

  • Vitousek PM, Hooper DU (1993) Biological diversity and terrestrial ecosystem biogeochemistry. In Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin Heidelberg New York, pp 3–14.

    Google Scholar 

  • Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167.

    Article  Google Scholar 

  • Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawaii: plant demography, nitrogen fixation, ecosystem effects. Ecol Monogr 59:247–265.

    Article  Google Scholar 

  • Vitousek PM, Walker LR, Whittaker LD, Mueller-Dombois D, Matson PA (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804.

    Article  PubMed  CAS  Google Scholar 

  • Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests. Adv Ecol Res 15:303–377.

    Article  Google Scholar 

  • Went FW, Stark N (1968) Mycorrhiza. BioScience 18:1035–1039.

    Article  Google Scholar 

  • Whitmore TC, Sayer JA (eds) (1992) Tropical deforestation and species extinction. Chapman and Hall, London.

    Google Scholar 

  • Wilson EO (1988) Biodiversity. Nat Acad Press, Washington DC.

    Google Scholar 

  • Wright JS (1992) Seasonal drought, soil fertility and the species diversity of tropical forest plant communities. Trends Ecol Evol 7:260–263.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Silver, W.L., Brown, S., Lugo, A.E. (1996). Biodiversity and Biogeochemical Cycles. In: Orians, G.H., Dirzo, R., Cushman, J.H. (eds) Biodiversity and Ecosystem Processes in Tropical Forests. Ecological Studies, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79755-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79755-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79757-6

  • Online ISBN: 978-3-642-79755-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics