Advertisement

Funktion, Lokalisation und Regulation des D3-Rezeptors: Relevanz für antipsychotische Mechanismen

  • P. Sokoloff
  • J. Diaz
  • M.-P. Martres
  • D. Levesque
  • C. Pilon
  • V. Dimitriadou
  • N. Griffon
  • C. H. Lammers
  • J.-C. Schwartz
Conference paper

Zusammenfassung

Mit molekularbiologischen Techniken konnten in jüngerer Zeit 5 verschiedene Gene identifiziert werden, die für Dopaminrezeptoren (DA-Rezeptoren) kodieren (Schwartz et al. 1992; Sibley u. Monsma 1992). Diese Rezeptoren lassen sich in D1- und D2-artige Unterfamilien einteilen, welche sich mehr oder weniger mit den früher in klassischen pharmakologischen Studien definierten D1- und D2-Rezeptoren decken (Spano et al. 1978; Kebabian u. Calne 1979). D1-artige Rezeptoren, z. B. D1- und D5-Rezeptoren, aktivieren die Bildung von zyklischem Adenosinmonophosphat (cAMP) und weisen eine hohe Affinität für „D1-selektive“ Agonisten und Antagonisten auf. D2-artige Rezeptoren, z. B. D2-, D3- und D4-Rezeptoren, verhalten sich wie hemmende Rezeptoren, indem sie nämlich im Fall der D2-und D4-Rezeptoren die Bildung von cAMP verhindern (Neve et al. 1989; Vallar et al. 1990, 1991; Cohen et al. 1993) und binden bereits früher identifizierte „D2-selektive“ Substanzen wie Anti-Parkinsonmittel und Antipsychotika.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Autelitano DJ, Snyder L, Sealfon SC, Roberts JL (1989) Dopamine D2-receptor messenger RNA is differentially regulated by dopaminergic agents in rat anterior and neurointermediate pituitary. Mol Cell Endocrinol 67: 101–105PubMedCrossRefGoogle Scholar
  2. Beckman L, Frohlander N (1990) Heterozygosity effects in studies of genetic markers in disease. Hum Hered 40: 322–329PubMedCrossRefGoogle Scholar
  3. Bernard KF, Weinberger DR (1990) The prefrontal cortex in schizophrenia and other neuropsychiatric disease: in vivo physiological correlates of cognitive deficits. Prog Brain Res 85: 521–536Google Scholar
  4. Bernard V, Le Moine C, Bloch B (1991) Striatal neurons express increased level of dopamine D2 receptor mRNA in response to haloperidol treatment: a quantitative in situ hybridization study. Neuroscience 45: 117–126PubMedCrossRefGoogle Scholar
  5. Bouthenet ML, Souil E, Martres MP, Sokoloff P, Giros B, Schwartz JC (1991) Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res 564: 203–219PubMedCrossRefGoogle Scholar
  6. Caine SB, Koob GF (1993) Modulation of cocaine self-administration in the rat through D3 dopamine receptors. Science 260: 1815–1816CrossRefGoogle Scholar
  7. Castro SW, Strange PG (1993) Differences in the ligand binding properties of the short and long versions of the D2 dopamine receptor. J Neurochem 60: 372–375PubMedCrossRefGoogle Scholar
  8. Cohen AI, Todd RD, Harmon S, O’Malley KL (1992) Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase. Proc Natl Acad Sci USA 89: 12093–12097PubMedCrossRefGoogle Scholar
  9. Coon H, Byerley W, Holik J et al. (1993) Linkage analysis of schizophrenia with five dopamine receptor genes in nine pedigrees. Am J Hum Genet, in pressGoogle Scholar
  10. Creese I, Sibley DR (1980) Receptor adaptations to centrally acting drugs. Annu Rev Pharmacol Toxico1 21:357–391CrossRefGoogle Scholar
  11. Crocq MA, Mant R, Asherson P et al. (1992) Association between schizophrenia and homozygosity at the dopamine D3 receptor gene. J Med Genet 29: 858–860PubMedCrossRefGoogle Scholar
  12. Crow TJ, Cross AJ, Johnstone EC, Longden A, Owen F, Ridley RM (1980) Time course of the antipsychotic effect in schizophrenia and some changes in postmortem brain and their relation to neuroleptic medication. Adv Biochem Psychopharmac 24: 495–503Google Scholar
  13. Curran T (1988) The fos oncogene. In: Reddy EP, Shalka AM, Curran T (eds) The Oncogene Handbook, Elsevier, Amsterdam, p 307Google Scholar
  14. Daly SA, Waddington JL (1993) Behavioural effects of the putative D3 dopamine receptor agonist 7-OH-DPAT in relation to other „D2-like“ agonists. Neuropharmacology 32: 509–510PubMedCrossRefGoogle Scholar
  15. Dearry A, Gingrich JA, Falardeau P, Fremeau RT, Bates MD, Caron MG (1990) Molecular cloning and expression of the gene for a human DI dopamine receptor. Nature 347: 72–76PubMedCrossRefGoogle Scholar
  16. Deutch AY, Lee MC, Ladorola MJ (1992) Regionally specific effects of atypical antipsychotic drugs on striatal Fos expression: the nucleus accumbens shell as a locus of antipsychotic action. Mol Cell Neurosci 3: 332–341PubMedCrossRefGoogle Scholar
  17. Essman WD, Mc Gonigle P, Lucki I (1993) Anatomical differentiation within the nucleus accumbens of the locomotor stimulatory actions of selective dopamine agonists and d-amphetamine. Psychopharmacology 112: 233–241PubMedCrossRefGoogle Scholar
  18. Farde L, Wiesel FA, Hall H, Halldin C, Stone-Elander S, Sedvall G (1987) No D2 receptorincrease in PET study of schizophrenia. Arch Gen Psychiatry 44:671–672PubMedGoogle Scholar
  19. Lang J (1983) Purification and characterization of subforms of the guanine-nucleotidebinding proteins Gai and Gao, Eur J Biochem 183:687CrossRefGoogle Scholar
  20. Gershon ES (1990) Genetics. In: Goodwin FK, Jamison KR (eds) Manic depressive illness, Oxford Univ Press, New York, pp 373–401Google Scholar
  21. Gottesman II (1991) Schizophrenia genesis: the origins of madness. Freedman WH (ed) New York.Google Scholar
  22. Govoni S, Hong JS, Yang H-Y T, Costa E (1980) Increase of neurotensin content elicited by neuroleptics in nucleus accumbens. J Pharm Exp Ther 215: 413–417Google Scholar
  23. Levant B, Bissette G, Widerlöv E, Nemeroff CB (1991) Alterations in regional brain neurotensin concentrations produced by atypical antipsychotic drugs. Regul Pept 32: 193–201PubMedCrossRefGoogle Scholar
  24. Graybiel AM, Moratalla R, Robertson HA (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix and limbic subdivisions of the striatum. Proc Natl Acad Sci USA 87: 6912–6916PubMedCrossRefGoogle Scholar
  25. Groenewegen Hi, Berendse HW, Meredith GE, Haber SN, Voorn P, Wolters JG, Lohman ARM (1991) Functional anatomy of the ventral limbic system-innervated striatum. In: Willner P, Scheel-Kruger J (eds) The mesolimbic dopamine system: from motivation to action, John Wiley, Chichester, p 19–59Google Scholar
  26. Jönsson E, Lannfelt L, Sokoloff P, Schwartz J-C, Sedvall G (1993) Lack of association between schizophrenia and alleles in the dopamine D3 receptor gene. Acta Psychiatr Scand 87: 345–349PubMedCrossRefGoogle Scholar
  27. Julius D (1990) Molecular biology of serotonin receptors, Annu Rev Neurosci 14: 335–360CrossRefGoogle Scholar
  28. Kanterman RY, Mahan LC, Briley EM, Monsma FJ, Sibley DR, Axelrod J, Feldek CC (1991) Transfected D2 dopamine receptors mediate the potentiation of arachidonic release in Chinese Hamster Ovary cells. Mol Pharmacol 39: 364–369PubMedGoogle Scholar
  29. Kebabian JW, Caine DB (1979) Multiple receptors for dopamine. Nature 277: 93–96PubMedCrossRefGoogle Scholar
  30. Kislaukis E, Dobner PR (1990) Mutually dependent response elements in the cis-regulated region of the neurotensin/neuromedin N gene integrate environmental stimuli in PC 12 cells. Neuron 4: 783–795Google Scholar
  31. Kopp J, Lindefors N, Brene S, Hall H, Persson H, Sedvall G (1992) Effect of raclopride on dopamine D2 receptor mRNA expression in rat brain. Neuroscience 47: 771–779PubMedCrossRefGoogle Scholar
  32. Landwehrmeyer B, Mengod G, Palacios JM (1993) Dopamine D3 receptor mRNA and binding sites in human brain. Mol Brain Res 18: 187–192PubMedCrossRefGoogle Scholar
  33. Lang J (1983) Purification and characterization of subforms of the guanine-nucleotidebinding proteins Gai and Gao, Eur J Biochem 183: 687CrossRefGoogle Scholar
  34. Levesque D, Diaz J, Pilon C et al. (1992) Identification, characterization and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin, Proc Natl Acad Sci USA 89: 8155–8159PubMedCrossRefGoogle Scholar
  35. Mant R, Williams J, Asherson P, Parfitt E, McGuffin P, Owen MJ (1994) The relationship between homozygosity at the dopamine D3 receptor gene and schizophrenia. Am J Med Genet (in press)Google Scholar
  36. Martres MP, Sokoloff P, Giros B, Schwartz JC (1992) Effects of dopaminergic transmission interruption on the D2 receptor isoforms in various cerebral tissues. J Neurochem 58: 673–679PubMedCrossRefGoogle Scholar
  37. Martres M-P, Bouthenet ML, Sales N, Sokoloff P, Schwartz JC (1985) Widespread distribution of brain dopamine receptors evidenced with [1251]iodosulpride, a highly selective ligand. Science 228: 752–755PubMedCrossRefGoogle Scholar
  38. Marx JL (1987) The fos gene as „master switch“. Science 237: 854–856PubMedCrossRefGoogle Scholar
  39. Merchant KM, Dorsa DM (1993) Differential induction of neurotensin and c-fos gene expression by typical versus atypical antipsychotics. Proc Natl Acad Sci USA 90: 3447–3451PubMedCrossRefGoogle Scholar
  40. Miller JC (1990) Induction of c-fos mRNA expression in rat striatum by neuroleptic drugs. J Neurochem 54: 1453–1455PubMedCrossRefGoogle Scholar
  41. Moises HW, Gelernter J, Giuffra LA et al. (1991) No linkage between D2 dopamine receptor gene region and schizophrenia. Arch Gen Psychiatr 48: 643–647PubMedGoogle Scholar
  42. Monsma FJ, Mahan LC, McVittie LD, Gerfen CR, Sibley DR (1990) Molecular cloning and expression of a D1 dopamine receptor linked to adenylyl cyclase activation. Proc Natl Acad Sci USA 87: 6723–6727PubMedCrossRefGoogle Scholar
  43. Morgan JI, Curran T (1989) Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci 12: 459–462PubMedCrossRefGoogle Scholar
  44. Müller R (1986) Cellular and viral fos genes: structure, regulation of expression and bio- logical properties of their encoded products, Biochim Biophys Acta 823: 207–225PubMedGoogle Scholar
  45. Neve KA, Henningen RA, Bunzow JR, Civelli O (1989) Functional characterization of a rat dopamine D2 cDNA expressed in a mammalian cell line. Mol Pharmacol 36: 446–451PubMedGoogle Scholar
  46. Nguyen TV, Kasofsky B, Birnbaum B, Cohen B, Hyman SE (1992) Differential expression of c-fos and Zif 268 in rat striatum following haloperidol, clozapine and amphetamine. Proc Natl Acad Sci USA 89: 4270–4274PubMedCrossRefGoogle Scholar
  47. Nimgaonkar VL, Zhang XR, Caldwell JG, Ganuli R, Chakravarti A (1993) An association with dopamine D3 receptor gene polymorphisms: probable effects of family history of schizophrenia. Am J Med Genet (in press)Google Scholar
  48. Nöthen M, Körner J, Lannfelt L et al. (1993) Lack of association between schizophrenia and alleles of the dopamine D1 D2, D3 and D4 receptor loci. Arch Gen Psychiatr (in press)Google Scholar
  49. Paul ML, Graybiel AM, David JC, Robertson HA (1992) D1-like and D2-like dodapine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson’s disease. J Neurosci 12: 3729–3742PubMedGoogle Scholar
  50. Pilon C, Levesque D, Dimitriadou V, Griffon N, Martres M-P, Schwartz JC, Sokoloff P (1994) Functional coupling of the human dopamine D3 receptor in a transfected NG 108–15 neuroblastoma-glioma hybrid cell line. Eur J Pharmacol Mol Pharmac Sect (submitted)Google Scholar
  51. Piomelli D, Pilon C, Giros B, Sokoloff P, Martres MP, Schwartz JC (1991) Dopamine activation of the arachidonic acid cascade via a modulatory mechanism as a basis for D1/D2 receptor synergism. Nature 353: 164–167PubMedCrossRefGoogle Scholar
  52. Robertson GS, Fibiger HC (1992) Neuroleptics increase C-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience 46: 315–328PubMedCrossRefGoogle Scholar
  53. Robertson HA, Peterson MR, Murphy K, Robertson GS (1989) D1- dopamine receptor agonists selectively activate c-fos independant of rotational behavior, Brain Res 503: 346–349PubMedCrossRefGoogle Scholar
  54. Schmauss C, Haroutunian V, Davis KL, Davison M (1993) Selective loss of dopamine D3-type receptor mRNA expression in parietal and motor cortices of patients with chronic schizophrenia. Proc Natl Acad Sci USA 90: 8942–8946PubMedCrossRefGoogle Scholar
  55. Schwartz J-C, Giros B, Martres M-P, Sokoloff P (1992) The dopamine receptor family: molecular biology and pharmacology. Sem Neurosci 4: 99–108CrossRefGoogle Scholar
  56. Seabrook GR, Patel S, Marwood R, Emms F, Knowles MR, Freedman SB, McAllister G (1992) Stable expression of human D3 dopamine receptors in GH4 Ci pituitary cells. FEBS Lett 312: 123–126PubMedCrossRefGoogle Scholar
  57. Seeman P, Guan HC, Van Tol HHM (1993) Dopamine D4 receptors elevated in schizophrenia. Nature 365: 441–445PubMedCrossRefGoogle Scholar
  58. Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32: 229–313PubMedGoogle Scholar
  59. Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early genes in the central nervous system. Neuron 4: 477–485PubMedCrossRefGoogle Scholar
  60. Siebert PD, Larrick JW (1992) Competitive PCR. Nature 359: 557–558PubMedCrossRefGoogle Scholar
  61. Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347: 146–151PubMedCrossRefGoogle Scholar
  62. Sokoloff P, Andrieux M, Besançon R, Pilon C, Martres MP, Giros B, Schwartz JC (1992) Pharmacology of human D3 dopamine receptor expressed in a mammalian cell line: comparison with D2 receptor. Eur J Pharmacol Mol Pharmacol Sect 225: 331–337CrossRefGoogle Scholar
  63. Spano PF, Govoni S, Trabucchi M (1978) Studies on the pharmacological properties of dopamine receptors in various areas of the central nervous system. Adv Biochem Psychopharmacol 19: 155–165PubMedGoogle Scholar
  64. Sunahara RK, Niznik HB, Weiner DM et al. (1990) Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature 347: 80–83PubMedCrossRefGoogle Scholar
  65. Sunahara RK, Guan HC, O’Dowd BF et al. (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 350: 614–619PubMedCrossRefGoogle Scholar
  66. Svensson K, Johansson AM, Magnusson T, Carlsson A (1986) (+)-AJ 76 and (+)-UH 232: central stimulants acting as preferential dopamine autoreceptor antagonists. Naunyn Schmiedebergs Arch Pharmacol 334:234–245PubMedCrossRefGoogle Scholar
  67. Tiberi M, Jarvie KR, Silvia C et al. (1991) Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: differential expression pattern in rat brain compared with the D1A receptor. Proc Natl Acad Sci USA 88: 7491–7495PubMedCrossRefGoogle Scholar
  68. Vallar L, Muca C, Magni M, Albert P, Bunzow J, Meldolesi J, Civelli O (1990) Differential coupling of dopaminergic D2 receptors expressed in different cell types. J Biol Chem 265: 10320–10326PubMedGoogle Scholar
  69. Van Tol HHM, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli O (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350: 610–614PubMedCrossRefGoogle Scholar
  70. Willner P, Scheel-Krüger J (1991) The mesolimbic dopamine system: from motivation to action. John Wiley, ChichesterGoogle Scholar
  71. Wong DF, Wagner HN Jr, Tune LE et al. (1986) Postron emission tomography reveals ele- vated D2 dopamine receptors in drug-naive schizophrenics. Nature 234: 1558–1563Google Scholar
  72. Young ST, Porrino LJ, Iadorola MJ (1991) Cocaine induces striatal c-fos immunoreactivity proteins via dopaminergic D1 receptors. Proc Natl Acad Sci 88: 1291–1295PubMedCrossRefGoogle Scholar
  73. Zahm DS, Johnson SN (1989) Asymetrical distribution of neurotensin immunoreactivity following unilateral injection of 6-hydroxydopamine in rat ventral tegmental area (VTA) Brain Res 483: 301–311Google Scholar
  74. Zahm DS, Brog JS (1992) On the significance of subterritories in the „accumbens“ part of the rat ventral striatum. Neuroscience 50: 751–767PubMedCrossRefGoogle Scholar
  75. Zhou QZ, Grandy DK, Thambi L et al. (1990) Cloning and expression of human and rat D1 dopamine receptors. Nature 347: 76–80PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • P. Sokoloff
  • J. Diaz
  • M.-P. Martres
  • D. Levesque
  • C. Pilon
  • V. Dimitriadou
  • N. Griffon
  • C. H. Lammers
  • J.-C. Schwartz

There are no affiliations available

Personalised recommendations