Skip to main content

Molekulare Grundlagen der Interaktion zwischen Dopamin-(D1-/D2-)Rezeptoren

  • Conference paper
  • 45 Accesses

Zusammenfassung

Zahlreiche objektive und subjektive psychomotorische Symptome werden von der Aktivität dopaminerger Neurone und von Pharmaka beeinflußt, die selektiv mit den neuronalen Dopaminrezeptoren in Wechselwirkung treten (Davis et al. 1991; Goldstein u. Deutsch 1992). Zu den Symptomen gehören der Rigor bei Parkinson-Krankheit, Halluzinationen bei Schizophrenie und Alzheimer-Krankheit sowie Dyskinesien bei Chorea Huntington und spontane orale Dyskinesien im Alter (Seeman 1987; Seeman u. Niznik 1990). Die Dopaminrezeptoren wurden anhand biochemischer, pharmakologischer und physiologischer Kriterien in 2 Klassen eingeteilt, die mit D1 und D2 bezeichnet wurden (Kebabian u. Caine 1979; Seeman 1980; Niznik 1987; Niznik u. Jarvie 1989; Kebabian 1993; Hall 1994). Die Dopaminrezeptoren gehören zu einer großen Genfamilie von Hormon-/ Neurotransmitterrezeptoren, die ihre biologischen Wirkungen über bestimmte Signaltransduktionsmechanismen entfalten, an denen die Bindung von Guaninnukleotiden bzw. G-Proteine beteiligt sind (s. Kaziro et al. 1991; Simon et al. 1991; Hille 1992; Clapham u. Neer 1993). D2-Dopaminrezeptoren hemmen die Aktivität der Adenylatzyklase und scheinen die zahlreichen anderen Effektorsysteme miteinander zu koppeln (Dal Toso et al. 1989; Neve et al. 1989; Albert et al. 1990; Senogles et al. 1990; Vallar et al. 1990; Kanterman et al. 1991; Elsholtz et al. 1991; Castellano et al. 1993; Lledo et al. 1994), indem sie spezifische Subtypen von G-Proteinen aktivieren (Lledo et al. 1992; Missalle et al. 1991; Burris et al. 1992).

Danksagung: Die Autoren möchten H. C. Guan, A. Tirpak, C. Ulpian, F. McConkey und K. Ohara für ihre technische Unterstützung und Dr. Philip Seeman für seine ständigen Ermutigungen und kompetenten Anmerkungen im Verlaufe dieser Experimente danken. Diese Arbeit wurde zu einem Teil unterstützt durch den Established-Investigator-Förderpreis der National Alliance for Research in Schizophrenia and Depression (NARSAD) sowie durch Zuschüsse des National Institute of Drug Abuse (DA07223-02), des kanadischen Medical Research Council (PG-11121), der Ontario Mental Health Foundation und der Ontario Friends of Schizophrenics an H. B. Niznik und das Clarke Institute of Psychiatry. R. K. Sunahara wurde durch Postgraduiertenstipendien des kanadischen Medical Research Council unterstützt, K. R. Jarvie und Z. B. Pristupa erhielten ein Stipendium der Ontario Mental Health Foundation bzw. ein John-Cleghorn-Stipendium der Canadian Psychiatric Research Foundation. H. B. Niznik ist Wissenschaftler im Gesundheitsministerium von Ontario.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Agnati LF, Fuxe K, Benfenati F, Euler G von, Fredholm B (1993) Intramembrane receptor-receptor interactions: Integration of signal transduction pathways in the nervous system. Neurochem Int 22: 213–222

    Article  PubMed  CAS  Google Scholar 

  • Albert PR, Neve KA, Bunzow JR, Civelli O (1990) Coupling of a cloned rat dopamine D2 receptor to inhibition of adenylate cyclase and prolactin secretion. J Biol Chem 265: 2098–2104

    PubMed  CAS  Google Scholar 

  • Andersen PH, Gingrich JA, Bates MD et al. (1990) Dopamine receptor subtypes: beyond the D1/D2 classification. TIPS. 11: 231–236

    PubMed  CAS  Google Scholar 

  • Artalejo CR, Ariano MA, Perlman RL, Fox AP (1990) Activation of facilitation calcium channels in chromaffin cells by D1 dopamine receptors through a cAMP/protein kinase A-dependent mechanism. Nature 348: 239–242

    Article  PubMed  CAS  Google Scholar 

  • Bertorello AM, Hopfield JF, Aperia A, Greengard P (1990) Inhibition by dopamine of Na+K ATPase activity through D1 and D2 dopamine receptor synergism. Nature 347: 386–388

    Article  PubMed  CAS  Google Scholar 

  • Bockaert J (1991) G-proteins and G-protein coupled receptors: structure, function and interactions. Curr Opin Neurobiol 1: 32–42

    Article  PubMed  CAS  Google Scholar 

  • Bunzow JR, Van Tol HHM, Grandy DK et al. (1988) Cloning and expression of a rat 2 dopamine receptor CDNA. Nature (Lond) 336: 783–787

    Article  CAS  Google Scholar 

  • Burris TP, Nguyen DN, Smith SG, Freeman ME (1992) The stimulatory and inhibitory effects of dopamine on prolactin secrection involve different G-proteins. Endocrinology 130: 926–932

    Article  PubMed  CAS  Google Scholar 

  • Cameron DL, Williams JT (1993) Dopamine D1 receptors facilitate transmitter release. Nature (Lond) 366: 344–347

    Article  CAS  Google Scholar 

  • Castellano MA, Liu LX, Monsma FJ, Sibley DR, Kapatos G, Chiodo LA (1993) Transfected D2 short dopamine receptors inhibit voltage dependent potassium current in neuroblastoma x glioma hybrid [NG 108–15] cells. Mol Pharmacology 44: 649–656

    CAS  Google Scholar 

  • Catalano M, Nobile M, Novelli E, Nothen MM, Smeraldi E (1993) Distribution of a novel mutation in the 1st exon of the human dopamine D4 receptor gene in psychotic patients. Biol Psychiatry 34: 459–464

    Article  PubMed  CAS  Google Scholar 

  • Cheng HC, Nishio H, Hatase O, Ralph S, Wang JH (1992) A synthetic peptide derived from p34 cdc2 is a specific and effiecient substrate of src-family related kinases. J Biol Chem 267: 9248–9256

    PubMed  CAS  Google Scholar 

  • Cheung AH, Huang RRC, Graziano MP, Strader CD (1991) Specifc activation of Gs by synthetic peptides corresponding to an intracellular loop of the 3-adrenergic receptor. FEBS Letts 279: 277–280

    Article  CAS  Google Scholar 

  • Cheung AH, Huang RRC, Strader CD (1992) Inovolement of specific hydrophobic, but not hydrophilic, amino acids in the third intracellular loop of the J3-adrenergic receptor in the activation of Gs. Mol Pharmacology 41: 1061–1065

    CAS  Google Scholar 

  • Civelli O, Bunzow JR, Grandy DK, (1993) Molecular diversity of the dopamine receptors. Ann Rev Pharmacol Toxicol 32: 281–307

    Article  Google Scholar 

  • Civelli O, Bunzow JR, Grandy DK, Zhou QY, Van Tol, HHM (1991) Molecular biology of the dopamine receptors. Eur J Pharmacol (Mol Pharmacology) 207: 277–286

    CAS  Google Scholar 

  • Clapham DE, Neer EJ (1993) New roles for G-protein J y-dimers in transmembrane signalling. Nature 365: 403–406

    CAS  Google Scholar 

  • Clark D, White FJ (1987) D1 dopamine receptor — the search for a function. Synapse 1: 347–388

    Article  PubMed  CAS  Google Scholar 

  • Cleghorn JM, Zipursky RB, List, SJ (1991) Structural and functional brain imaging in schizophrenia. J Psychiatr Neurosci 16: 53–74

    CAS  Google Scholar 

  • Cole AJ, Bhat RV, Patt C, Worley PF, Baraban JM (1992) D1 dopamine receptor activation of multiple transcription factor genes in rat striatum. J Neurochem 58: 1420–1426

    Article  PubMed  CAS  Google Scholar 

  • Collins S, Caron MG, Lefkowitz RJ (1992) From ligand binding to gene expression: new insights into the regulation of G-protein coupled receptors. TIBS 17: 37–39

    PubMed  CAS  Google Scholar 

  • Cotecchia S, Ostrowski J, Kjelsberg MA, Caron MG, Lefkowitz RJ (1992) Discrete amino acid sequences of the al adrenergic receptor determine selectivity of coupling to PI hydrolysis. J Biol Chem 267: 1633–1639

    PubMed  CAS  Google Scholar 

  • Dalman HM, Neubig RB (1991) Two peptides from the a2A-adrenergic receptor alter receptor G protein coupling by distinct mechanisms. J Biol Chem 266: 11025–11029

    PubMed  CAS  Google Scholar 

  • Dal Toso R, Sommer B, Ewert M et al. (1989) The dopamine D2 receptor: two molecular forins generated by alternative splicing. EMBO J 8 /13: 4025–4034

    Google Scholar 

  • Davidson M, Harvey PD, Bergman PL et al. (1990) Effects of the D1 agonist SKF-38393 combined with haloperidol in schizophrenic patients. Arch Gen Psychiatr 47: 190–191

    PubMed  CAS  Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia. A review and reconceptualization. Am J Psychiatry 148: 1474–1486

    PubMed  CAS  Google Scholar 

  • Deutsch PJ, Sun Y (1992) The 38 amino acid form of pituitary adenylate cyclase activating polypeptide stimulates dual signaling casades in PC I2 cells and promotes neurite outgrowth.1 Biol Chem 267: 5108–5113

    CAS  Google Scholar 

  • Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ (1991) Model systems for the study of seven transmembrane segment receptors. Ann Rev Biochem 60: 653–688

    Article  PubMed  CAS  Google Scholar 

  • Dowling JE (1991) Retinal neuromodulation. The role of dopamine. Visual Neurosci 7: 87–97

    Article  CAS  Google Scholar 

  • Dowling JE (1994) The neuromodulatory role of dopamine in the teleost retina In. Niznik HB (ed) Dopamine receptors and transporters: Pharmacology, structure and function. Dekker, New York, pp 37–57

    Google Scholar 

  • Elsholtz HP, Lew AM, Albert PR, Sundmark VC (1991) Inhibitory control of prolactin and Pit 1 gene promotors by dopamine: Dual signaling pathways required for D2 receptor regulated expression of the prolactin gene. J Biol Chem 266: 22915–22925

    Google Scholar 

  • Falardeau P (1994) Functional distinctions of dopamine D2 long and D2 short receptors In: Niznik HB (ed) Dopamine receptors and transporters: Pharmacology, structure and function. Dekker, New York, pp 323–342

    Google Scholar 

  • Federman AD, Conklin BR, Schrader KA, Reed RR, Bourne HR (1992) Hormonal stimulation of adenyl cyclase through Gi-protein ßy subunits. Nature 356: 159–161

    Article  PubMed  CAS  Google Scholar 

  • Felder CC, Blecher M, Jose PA (1989) Dopamine DI mediated stimulation of phospholipase C activity in rat cortical membranes. J Biol Chem 264: 8739–8745

    PubMed  CAS  Google Scholar 

  • Felder CC, Albrecht FE, Campbell T, Eisner GM, Jose PA (1993) CAMP independent G-protein linked inhibition of Na+/H+ exchange in renal brush border by DI dopamine agonists. Am J Physiol 264: F1032 - F1037

    PubMed  CAS  Google Scholar 

  • Gerfen CR, McGinty JF, Young WS (1991) Dopamine differentially regulated dynorphin, substance P, and enkephalin expression in striatal neurons: in situ hybridization histochemical analysis. J Neurosci 11: 1016–1031

    PubMed  CAS  Google Scholar 

  • Gerfen CR (1992a) The neostriatal mosaic: multiple levels of compartmental organization. TINS 15: 133–139

    PubMed  CAS  Google Scholar 

  • Gerfen CR (1992b) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Ann Rev Neurosci 15: 285–320

    Article  PubMed  CAS  Google Scholar 

  • Gingrich JA, Jarvie KR, Tiberl M, Fremeau RT, Caron MG (1992) The family of receptors for dopamine: Cloning, structures and properties. Biotechnol Update 7:105–118

    Google Scholar 

  • Gerfen CR (1992a) The neostriatal mosaic: multiple levels of compartmental organization. TINS 15: 133–139

    PubMed  CAS  Google Scholar 

  • Goldstein M, Deutch AY (1992) Dopaminergic mechanisms in the pathogenesis of schizophrenia. FASEBJ 6: 2413–2421

    CAS  Google Scholar 

  • Gomez-Mancilla B, Bedard PJ (1991) Effect of DI and D2 agonists on dyskinesia produced by L-dopa in MPTP treated monkeys. J Pharmacol Exp Ther 259: 409–413

    PubMed  CAS  Google Scholar 

  • Grandy K, Bunzow JR, Civelli O (1994) The dopamine D2 receptor In: Niznik HB (ed) Dopamine receptors and transporters: Pharmacology, structure and function. Dekker, New York, pp 151–164

    Google Scholar 

  • Haga K, Haga T (1992) Activation by G-protein (3y subunits of agonist or light dependent phosphorylation of muscarinic acetylcholine receptors and rhodopsin. J Biol Chem 267: 2222–2227

    PubMed  CAS  Google Scholar 

  • Hall H (1994) Dopamine receptors: Radioligands for pharmacological and biochemical characterization. In: Niznik HB (ed) Dopamine receptors and transporters: Pharmacology, structure and function. Dekker, New York, pp 3–35

    Google Scholar 

  • Harrison MB, Wiley RG, Wooten CF (1990) Selective localization of striatal DI receptors to striatonigral neurons. Brain Res. 528: 317–322

    Article  PubMed  CAS  Google Scholar 

  • Hemmings HC, Walaas Sl, Oiumet CC and Greengard P (1987) Dopaminergic regulation of protein phosphorylation in the striatum: DARP-32. Trends Neurosci. 10: 77–82

    Article  Google Scholar 

  • Hüle, B (1992) G protein-coupled Mechanisms and nervous signaling. Neuron, 9: 187–195

    Article  Google Scholar 

  • Jarvie KR, Pristupa ZB, Sunahara RK, Niznik HB (1994) Dopamine D1 and D5 receptors: Sequences within the 3rd cytoplasmic loop of D5 display higher affinity for adenylate cyclase than DI. Mol Pharmacology (in preparation)

    Google Scholar 

  • Jarvie KR, Tiberi M, Caron MG (1994) The dopamine D5 and Dib receptors In Niznik HB (ed) Dopamine receptors and transporters: Pharmacology, structure and function. Dekker, New York, pp 133–150

    Google Scholar 

  • Jones P, Murray RM (1991) The genetics of schizophrenia is the genetics of neurodevelopment. Br J Psychiatry 158: 615–623

    Article  PubMed  CAS  Google Scholar 

  • Kanterman RY, Mahan LC, Briley EM et al. (1991) Transfected D2 dopamine receptors mediate the potentiation of aracadonic acid release in CHO cells. Mol Pharmacology 39: 364–369

    CAS  Google Scholar 

  • Kaziro Y, Itoh H, Kozasa T, Nakafuka M, Satoh T (1991) Structure and function of signal transducing GTP binding proteins. Ann Rev Biochem 60: 349–400

    Article  PubMed  CAS  Google Scholar 

  • Kebabian JW (1993) Brain dopamine receptors–20 years of progress. Neurochemical Res 18: 101–104

    Article  CAS  Google Scholar 

  • Kebabian JW, Caine DB (1979) Multiple receptors for dopamine. Nature (Lond) 277: 93–96

    Article  CAS  Google Scholar 

  • Kemp BE, Pearson RB (1990) Protein kinase sequence motifs. TIBS 12: 342–346

    Google Scholar 

  • Kleuss C, Scherubl H, Hescheler J, Schultz G, Wittig B (1992) Different 0-subunits determine G-protein interaction with transmembrane receptors. Nature 358: 424–426

    Article  PubMed  CAS  Google Scholar 

  • Kobilka BK (1992) Adrenergic receptors as models for G-protein coupled receptors. Ann Rev Neurosci 15: 87–114

    Article  PubMed  CAS  Google Scholar 

  • Lahoste GL, Yu J, Marshall JF (1993) Striatal fos expression as indicative of dopamine D1/D2 synergism and receptor supersensitivity. Proc Natl Acad Sci (USA) 90: 7451–7455

    Article  CAS  Google Scholar 

  • Lankford KL, Demello FG, Klein WL (1988) Di type dopamine receptors inhibit growth cone motility in cultured retinal neurons: evidence that neurotransmitters act as morpho-genic regulators in the developing nervous system. Proc Natl Acad Sci (USA) 85: 2839–2843

    Article  CAS  Google Scholar 

  • Lemmon MA, Flanagan JM, Treutlein HR, Zhang J, Engleman DM (1992) Sequence spe- cifcity in the dimerization of transmembrane a helices. Biochemistry 31: 12719–12725

    Article  PubMed  CAS  Google Scholar 

  • LeMoine C, Normand E, Bloch B (1991) Phenotypical characterization of rat striatal neurons expressing the Di dopamine receptor gene. Proc Natl Acad Sci (USA) 88: 4205–4209

    Article  CAS  Google Scholar 

  • Lester J, Fink S, Aronin N, Difiglia M (1993) Colocalization of D1 and D2 dopamine receptor mRNAs in striatal neurons. Brain Res 621: 106–110

    Article  PubMed  CAS  Google Scholar 

  • Levey AI, Hersch SM, Rye D et al. (1993) Localization of Di and D2 dopamine receptors in brain with subtype specific anti-bodies. Proc Natl Acad Sci (USA) 90: 8861–8865

    Article  CAS  Google Scholar 

  • Lew AM, Elsholtz HP (1994) Dopaminergic signalling and regulation of pituitary hormone genes. In: Niznik HB (ed) Dopamine receptors and transporters: Pharmacology, structure and function. Dekker, New York, pp 473–491

    Google Scholar 

  • Lewine RRJ (1992) Brain morphology in schizophrenia. Cuff Opin Psychiatry 5: 92–97

    Article  Google Scholar 

  • Licther JB, Barr CL, Kennedy JL, Van Tol HHM, Kidd KK, Livak KJ. A hypervariable segment in the human dopamine D4 (DRD 4) gene. Hum Mol Genetics 2:767–773

    Google Scholar 

  • Liu YF, Civelli O, Grandy DK, Albert PR (1992) Differential sensitivity of the short and long human dopamine D2 receptor subtypes to PKC. J Neurochem 59: 2311–2315

    Article  PubMed  CAS  Google Scholar 

  • Lledo PM, Hamburger V, Bockeart J, Vincent JD (1992) Differential G-protein mediated coupling of D2 dopamine receptors to K+ and Ca2+ currents in rat anterior pituitary cells. Neuron 8: 455–463

    Article  PubMed  CAS  Google Scholar 

  • Lledo PM, Vernier PH, Kukstas LA, Vincent JD, Hamburger V, Bockaert J (1994) Coupling of dopamine receptors to ionic channels in excitable tissues In Niznik HB (ed) Dopamine receptors and transporters: Pharmacology, structure and function. Dekker, New York, pp 59–88

    Google Scholar 

  • Lovenberg TW, Nichols DE, Nestler EJ, Roth RH, Mailman RB (1991) Guanine nucleotide binding proteins and the regualtion of CAMP synthesis in NS2OY neuroblastoma cells: role of D1 dopamine and muscarinic receptors. Brain Res 556: 101–107

    Article  PubMed  CAS  Google Scholar 

  • Malek D, Munch G, Palm D (1993) Two sites in the third inner loop of the dopamine D2 receptor are involved in functional G-protein mediated coupling to adenylate cyclase. FEBS Letts 325: 215–219

    Article  CAS  Google Scholar 

  • Mahan LC, Burch RM, Monsma FJ, Sibley DR (1990) Expression of striatal D1 dopamine receptors coupled to inositolphosphate production and calcium mobilization in Xenopus oocytes. Proc Natl Acad Sci (USA) 87: 2196–2200

    Article  CAS  Google Scholar 

  • McHugh D, Coffin V (1991) The reversal of extrapyramidal side effects with SCH-39166, a dopamine D1 receptor antagonist. Eur J Pharmacol 202: 133–134

    Article  PubMed  CAS  Google Scholar 

  • McMillian MK, He XP, Hong JS, Pennypacker KR (1992) Dopamine stimulates [3H]- phorbol 12,13-dibutyrate binding in cultured striatal cells. J Neurochem 58: 1308–1312

    Article  PubMed  CAS  Google Scholar 

  • Missale C, Boroni F, Castelletti L et al. (1991) Lack of coupling of D2 receptors to adenylate cyclase in GH 3 cells exposed to epidermal growth factor: Possible role of a differential expression of Gi protein subtypes. J Biol Chem 266: 23392–23398

    PubMed  CAS  Google Scholar 

  • Montmayer JP, Bonelli E (1991) Transcription mediated by a CAMP-responsive promotor element is reduced upon activation of dopamine D2 receptors. Proc Natl Acad Sci (USA) 88: 3135–3139

    Article  Google Scholar 

  • Morell R (1993) Association between schizophrenia and homozygosity at the dopamine D3 receptor gene. J Med Genet 30: 708

    Article  PubMed  CAS  Google Scholar 

  • Mukai H, Munekata E, Higashijima T (1992) G protein antagonists. A novel hydrphobic peptide competes with receptor for G-protein binding. J. Biol Chem 267: 16237–16243

    PubMed  CAS  Google Scholar 

  • Nagai Y, Uneo S, Saeki Y, Soga F, Yanagihara T (1993) Expression of a D3 receptor gene and a novel variant transcript generated by alternative splicing in human peripheral blood lympocytes. Biochem Biophys Res Commun 194: 368–374

    Article  PubMed  CAS  Google Scholar 

  • Neve KA, Henningsen RA, Bunzow JR, Civelli 0 (1989) Functional characterization of a rat dopamine D2 receptor CDNA expressed in a mammalian cell line. Mol Pharmacology 36: 446–451

    CAS  Google Scholar 

  • Niznik HB (1987) Dopamine receptors; molecular structure and function. Mol Cell Endocrinol 54: 1–22

    Article  PubMed  CAS  Google Scholar 

  • Niznik HB, Jarvie KR (1989) Dopamine receptors. In: Williams M, Glennon RA, Timmermans PB (eds) Receptor pharmacology and function. Dekker, New York Basel, pp 717–768

    Google Scholar 

  • Niznik HB, ODowd BF, Sunahara RK et al. (1992) The dopamine D1 receptors. In: Braun MR (ed) Molecular biology of receptors that couple to G-proteins. Birkhäuser, Boston, pp 142–159

    Google Scholar 

  • Niznik HB, Van Tol HHM (1992) Dopamine receptor genes: New tools for molecular psychiatry. J Psychiatry Neurosci 17: 158–180

    PubMed  CAS  Google Scholar 

  • Nothen MM, Cichon S, Propping P, Fimmers R, Schwab SG, Wildenauer DB (1993) Excess of homozygosity at the dopamine D3 receptor gene in schizophrenia not confirmed. J Med Genet 30: 708

    Article  PubMed  CAS  Google Scholar 

  • Ohara K, Ulpian C, Seeman P, Sunahara K, Van Tol HHM, Nizrtik HB (1993) Schizophrenia: dopamine D1 receptor sequence is normal but has several DNA polymorphisms. Neuropsychopharmacol 8: 131–135

    CAS  Google Scholar 

  • Okamaoto T, Katada T, Murayama T, Ui M, Ogata E, Nishimoto I (1990) A simple structure encodes G-protein activation G function of the IGF-H mannose 6 phosphate receptor. Cell 62: 709–717

    Article  Google Scholar 

  • Okamaoto T, Murayama Y, Hayashi Y, Inagaki M, Ogata E, Nishimoto I (1991) Identification of a Gs activator region of the fl-adrenergic receptor that is autoregulated via PKA dependent phosphorylation. Cell 67: 723–730

    Article  Google Scholar 

  • Okamaoto T, Nishimoto I (1992) Detection of G-protein activator regions in the M4 subtype muscarinic cholinergic and a2 adrenergic receptors based upon characteristics in primary structure. J Biol Chem 267: 8342–8346

    Google Scholar 

  • Ostrowski J, Kjelsberg MA, Caron MG, Lefkowitz RJ (1992) Mutagenesis of the ß2 adrenergic receptor: How structure elucidates function. Ann Rev Pharmacol Toxicol 32: 167–183

    Article  CAS  Google Scholar 

  • Pagliusi S, Cholletdaemerius A, Losberger C, Mills A, Kawashima E (1993) Characterization of a novel exon within the D3 receptor gene giving rise to an mRNA isoform expressed in rat brain. Biochem Biophys Res Commun 194: 465–471

    Article  PubMed  CAS  Google Scholar 

  • Pilowsky LS, Kerwin RW, Murray RM (1993) Schizophrenia — a neurodevelopmental perspective. Neuropsychopharmacol 9: 83–91

    CAS  Google Scholar 

  • Piomelli D, Pilon C, Giros B, Sokoloff P, Martres MP, Schwartz JC (1991) Dopamine activation of the arachidonic acid cascade as a basis for Dl/D2 receptor synergism. Nature 353: 164–167

    Article  PubMed  CAS  Google Scholar 

  • Pitcher JA, Inglese J, Higgins JB et al. (1992) Role of ß/y subunits of G proteins in targeting the bARK to membrane bound receptors. Science 257: 1264–1267

    Article  PubMed  CAS  Google Scholar 

  • Power RF, Mani SK, Codina J, Conneely OM, OMalley BW (1991) Dopaminergic and li- gand independent activation of steroid hormone receptors. Science 254: 1636–1639

    Article  PubMed  CAS  Google Scholar 

  • Rappaport MS, Sealfon SC, Prikhozhan A, Huntley GW, Morrison JH (1993) Heterogeneous distribution of D1, D2 and D5 receptor m-RNAs in monkey striatum. Brain Res 616: 242–250

    Article  PubMed  CAS  Google Scholar 

  • Robertson GS, Robertson HA (1994) Dopamine receptor regulation of immediate early genes in the basal ganglia. In: Niznik HB (ed) Dopamine receptors and transporters: Pharmacology, structure and function. Dekker, New York, pp 419–436

    Google Scholar 

  • Robertson HA (1992) Dopamine receptor interactions: some implications for the treatment of Parkinson’s disease. TINS 15: 201–206

    PubMed  CAS  Google Scholar 

  • Robertson HA, Paul ML. Moratalla R, Graybiel AM (1991) Expression of the immediate early response gene c-fos in basal ganglia: Induction by dopaminergic drugs. Can J Neurol Sci 18:380–383

    PubMed  CAS  Google Scholar 

  • Robertson HA, Paul ML, Robertson GS (1990) Interactions between D1 and D2 dopamine receptors: The immediate early response gene c-fos in long term changes in the striatum. In: Bernardi G (ed) The basal banglia III. Plenum Press, New York, pp 417–423

    Google Scholar 

  • Rodrigues PDS, Dowling JE (1990) Dopamine induces neurite retraction in retinal horizontal cells via diacylglycerol and protein kinase C. Proc Natl Acad Sci (USA) 87: 9693–9697

    Article  Google Scholar 

  • Rosengarten H, Schweitzer JW, Freidhoff AJ (1993) A subpopulation of dopamine D1 receptors mediate repetitive jaw movements in rats. Pharmacol Biochem Behav 45: 921–924

    Article  PubMed  CAS  Google Scholar 

  • Ruiz J, Gabilondo AM, Meana JJ, Garciasevilla JA (1992) Increased [3H]-raclopride binding sites in postmortem brains from schizophrenic violent suicide victims. Psycho-pharmacology 109: 410–414

    CAS  Google Scholar 

  • Sarkar G, Kapelner S, Grandy DK et al. (1991) Direst sequencing of the dopamine D2 receptor in schizophrenics reveals three polymorphisms but no structural change in the receptor. Genomics 11: 8–14

    Article  PubMed  CAS  Google Scholar 

  • Schimmer B (1979) Adrenocortical Y1 cells. Methods Enzymol 52: 570–574

    Article  Google Scholar 

  • Schmauss C, Haroutunian V, Davis KL, Davidson M (1993) Selective loss of dopamine D3 type receptor mRNA expression in parietal and motor cortices of patients with chronic schizophrenia. Proc Natl Acad Sci (USA) 90: 8942–8946

    Article  CAS  Google Scholar 

  • Schmidt CJ, Thomas TC, Levine MA, Neer EJ (1992) Specificity of G-protein ß and y subunit interaction. J Biol Chem 267: 13807–13810

    PubMed  CAS  Google Scholar 

  • Schwartz JC, Levesque D, Martres MP, Sokoloff P (1993) Dopamine D3 receptor — basic and clinical aspects. Clin Neuropharmacol 16: 295–314

    Article  PubMed  CAS  Google Scholar 

  • Seeman P(1980) Dopamine receptors. Pharmacol Rev 32:229–313

    PubMed  CAS  Google Scholar 

  • Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1: 133–152

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (1992) Dopamine receptor sequences: Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychpharmacology 7: 261–284

    CAS  Google Scholar 

  • Seeman P, Guan HC, Civelli O, Van Tol HHM, Sunahara RK, Niznik HB (1992) The cloned dopamine D2 receptors reveals different densities for dopamine antagonist ligands: Implications for human brain positron emission tomography. Eur J Pharmacol 227: 139–146

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Guan HC, and Van Tol HHM (1993) Dopamine D4 receptors elevated in schizophrenia. Nature 365: 441–445

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Niznik HB (1988) Dopamine D1 receptor pharmacology. ISI Atlas Sci Pharmacol 2: 161–170

    CAS  Google Scholar 

  • Seeman P, Niznik HB (1990) Dopamine receptors and transporters in Parkinson’s disease and schizophrenia. FASEB J 4: 2737–2744

    PubMed  CAS  Google Scholar 

  • Seeman P, Niznik H, Guan HC (1990) Elevation of D2 dopamine receptors in schizophre- nia are underestimated by radioactive raclopride. Arch Gen Psychiatry 47: 1170–1172

    PubMed  CAS  Google Scholar 

  • Seeman P, Niznik HB, Guan HC, Booth G, Ulpian C (1989) Link between D1 and D2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain. Proc Natl Acad Sci (USA) 86: 10156–10160

    Article  CAS  Google Scholar 

  • Seeman P, Ohara K, Ulpian C et al. (1993a) Schizophrenia: Normal sequence in the dopamine D2 receptor region that couples to G-proteins. DNA polymorphisms in D2. Neuropsychopharmacology 8: 137–142

    PubMed  CAS  Google Scholar 

  • Seeman P, Sunahara RK, Niznik HB (1994) Receptor-receptor link in membranes revealed by ligand competition: Example for dopamine D1 and D2 receptors. Synapse (in press)

    Google Scholar 

  • Senogles SE, Spiegel AM, Padress W, Iyengar R, Caron MG (1990) Specificity of receptor-G protein interactions: Discrimination of Gi subtypes by the D2 dopamine receptor in a reconstituted system. J Biol Chem 265: 4507–4514

    PubMed  CAS  Google Scholar 

  • Sibley DR and Monsma FJ (1992) Molecular biology of dopamine receptors. TEPS 13: 61–69

    CAS  Google Scholar 

  • Sidhu A, Sullivan M, Kohout T, Balen P, Fishman P (1991) DI dopamine receptors can interact with both stimulatory and inhibitory gunaine nucleotide binding proteins. J Neurochem 57: 1445–1451

    Article  PubMed  CAS  Google Scholar 

  • Simon MI, Strathmann MP, Narasimhan G (1991) Diversity of G-proteins in signal transduction. Science 252: 802–808

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff P, Martre MP, Giros B et al. (1994) The dopamine D3 receptor. In: Niznik HB (ed) Dopamine receptors and transporters: Pharmacology, structure and function. Dekker, New York, pp 165–188

    Google Scholar 

  • Srivastava LK and Mishra RK (1994) Dopamine receptor gene expression: Effects of neuroleptics, denervation and development. In: Niznik HB (ed) Dopamine receptors and transporters: Pharmacology, structure and function. Dekker, New York, pp 437–457

    Google Scholar 

  • Sunahara RK, Niznik HB, Weiner DM et al. (1990) Human dopamine DI receptor encoded by an intronless gene on chromosome 5. Nature 347: 80–83

    Article  PubMed  CAS  Google Scholar 

  • Sunahara RK, Guan HC, O’Dowd BF et al. (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 350: 614–619

    Article  PubMed  CAS  Google Scholar 

  • Sunahara RK, Seeman P, Van Tol HHM, Niznik HB (1993) Dopamine receptors and antipsycotic drug response. Br J Psychiatr 164 [Suppl 22]: 31–38

    Google Scholar 

  • Sunahara RK, Lawrence J, Guan Hj, Seeman P, Niznik HB (1994) Subtype specific dopamine D1/D2 receptor interactions are regulated by 13/y G-protein subunits. Mol Pharmacol (in preparation)

    Google Scholar 

  • Surmeier DJ, Reiner A, Levine MS, Ariano MA (1993) Are neostriatal fopamine receptors co-localized. Trends Neurosci 16: 299–305

    Article  PubMed  CAS  Google Scholar 

  • Tang Wj, Gilman AG (1991) Type specific regulation of adenylate cyclase by G-protein ßy subunits. Science 254: 1500–1503

    Article  PubMed  CAS  Google Scholar 

  • Turgeon JL, Warring (1992) Functional cross-talk between receptors for peptide and steriod hormones. Trends Endocrinol Metabol 3: 360–365

    CAS  Google Scholar 

  • Undie AS, Friedman E (1990) Stimulation of a dopamine DI receptor enhances inositol phosphate formation in rat brain. J Pharmacol Exp Ther 253: 987–992

    PubMed  CAS  Google Scholar 

  • Undie AS, Friedman E (1992) Characteristics of dopamine stimulated PI metabolism in rat brain. Soc Neurosci (Abstr 18, p 275 )

    Google Scholar 

  • Vallar L, Muca C, Magni M, Albert P, Bunzow JR, Meldolesi J, Civelli O (1990) Differential coupling of dopaminergic D2 receptors expressed in different cell types: stimulation of phosphatidylinositol 4,5 biphosphate in LTk-fibroblasts, hyperpolarization and cytosolic free Ca2+ concentration decrease in GH4C1 cells. J Biol Chem 265: 10320–10326

    PubMed  CAS  Google Scholar 

  • Van Tol HHM (1994) The dopamine D4 receptor. In Niznik HB (ed) Dopamine receptors and transporters: Pharmacology, structure and function. Dekker, New York, pp 189–204

    Google Scholar 

  • Van Tol HHM, Bunzow JR, Guan HC et al. (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350: 610–614

    Article  PubMed  Google Scholar 

  • Van Tol HHM, Wu CM, Guan et al. (1992) Multiple dopamine D4 receptor variants in the human population. Nature 358: 149–152

    Article  PubMed  Google Scholar 

  • Waddington JL (1989) Functional interactions between D1 and D2 dopamine receptor systems. J Psychopharmacol 3: 54–63

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niznik, H.B., Sunahara, R.K., Pristupa, Z.B., Jarvie, K.R. (1995). Molekulare Grundlagen der Interaktion zwischen Dopamin-(D1-/D2-)Rezeptoren. In: Gerlach, J. (eds) Schizophrenie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79738-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79738-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59243-3

  • Online ISBN: 978-3-642-79738-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics