Skip to main content

Host—Parasite Interactions in Molluscs

  • Chapter
Invertebrate Immunology

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 15))

Abstract

The phylum Mollusca is second only to the Arthropoda in both number and diversity of living species. Representatives include not only the readily recognized gastropods (snails, slugs and limpets) and bivalves (e.g., oysters, mussels and clams) but also the ‘brainy’ cephalopods including octopus and squid, and more primitive representatives such as chitons. These animals occur in a huge variety of terrestrial, freshwater and marine habitats. Interest in their pathogens and parasites arises primarily from the role of gastropods in the transmission of trematodes of medical and veterinary importance. Perhaps the most important of these are the human infecting schistosomes, estimated to parasitize 200 million people world wide. In addition, molluscs such as oysters, clams, mussels as well as gastropod “escargots” are increasingly being raised for human consumption, in both the developed and developing world. There are thus clear medical and economic needs to obtain a full understanding of molluscan pathogens, the capabilities of the molluscan immune systems, and how these interact to determine the outcome of a host-parasite encounter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adbul-Salam JM, Michelson EH (1980) Riomphalaria glabrata amoebocytes: effect of Schistosoma mansoni infection on in vitro phagocytosis. J Invertebr Pathol 35: 241–248

    Article  Google Scholar 

  • Adema CM, van der Knaap WPW, Sminia T (1991) Mollusean hemocyte-mediated cytotoxicity: the role of reactive oxygen intermediates. Crit Rev Aquat Sci 4: 201–223

    Google Scholar 

  • Adema CM, Harris RA, van Deutekom-Mulder EC (1992) A comparative study of hemocytes from six different snails: morphology and functional aspects. J Invertebr Pathol 59: 24–32

    Article  PubMed  CAS  Google Scholar 

  • Adema CM, Arguello DF, Strieker SA, Loker ES (1994) A time-lapse study of interactions between Echinostoma paraensei intramollscan larval stages and adherent hemocytes from Biomphalaria glabrata and Helix aspersa. J Parasitol 80: 719–727

    Article  PubMed  CAS  Google Scholar 

  • Amen RI, Baggen JMC, Meuleman EA, Wijsman-Grootendorst A, Boon ME, Bezemer PD, Sminia T (1991a) Trichobilharzia ocellata: quantification of effects on hemocytes of the pond snail Lymnaea stagnalis by morphometric means. Tissue Cell 23: 665–676

    Article  PubMed  CAS  Google Scholar 

  • Amen RI, Tijnagel JMG, van der Knaap WPW, Meuleman EA, de Lange-de Klerk ESM, Sminia T (1991b) Effects of Trichobilharzia ocellata on hemocytes of Lymnaea stagnalis. Dev Comp Immunol 15: 105–115

    Article  PubMed  CAS  Google Scholar 

  • Amen RI, Aten JA, Baggen JMC, Meuleman EA, de Lange-de Klerk ESM, Sminia T (1992a) Trichobilharzia ocellata in Lymnaea stagnalis: flow cytometric approach to study its effects on hemocytes. J Invertebr Pathol 59: 95–98

    Article  PubMed  CAS  Google Scholar 

  • Amen RI, Baggen JMC, Bezemer PD, de Jong-Brink M (1992b) Modulation of the activity of the internal defence system of the pond snail Lymnaea stagnalis by the avian schistosome Trichobilharzia ocellata. Parasitology 104: 33–40

    Article  PubMed  Google Scholar 

  • Bachère E, Hervio D, Mialhe E (1991) Luminol-dependent chemiluminescence by hemocytes of two marine bivalves, Ostrea edulis andCrassostrea gigas. Dis Aquat Org 11: 173–180

    Article  Google Scholar 

  • Basch PF (1975) An interpretation of snail-trematode infection rates: specificity based on concordance of compatible phenotypes. Int J Parasitol 5: 449–452

    Article  PubMed  CAS  Google Scholar 

  • Basch PF (1976) Intermediate host specificity in Schistosoma mansoni. Exp Parasitol 39: 150–169

    Article  PubMed  CAS  Google Scholar 

  • Basch PF, Di Conza JJ (1974) The miracidium-sporocyst transition in Schistosoma mansoni: surface changes in vitro with ultrastructural correlation. J Parasitol 60: 935–941

    Article  PubMed  CAS  Google Scholar 

  • Bayne CJ (1983) Mollusean immunobiology. In: Saleuddin ASM, Wilbur KM (ed) The Mollusca vol 5 Physiology, part 2, Academic Press, New York, pp 407–486

    Google Scholar 

  • Bayne CJ (1991) Invertebrate host immune mechanisms and host escapes. In: Toft CA, Aeschlimann A, Bolis L (eds) Parasite-host associations. Coexistence or conflict? Oxford Univ Press, New York, pp 299–315

    Google Scholar 

  • Bayne CJ, Yoshino TP (1989) Determinants of compatibility in mollusc-trematode parasitism. Am Zool 29: 399–407

    Google Scholar 

  • Bayne CJ, Buckley PM, Dewan PC (1980a) Schistosoma mansoni: cytotoxicity of hemocytes from susceptible snail hosts for sporocysts in plasma from resistantBiomphalaria glabrata. Exp Parasitol 50: 409–416

    Article  PubMed  CAS  Google Scholar 

  • Bayne CJ, Buckley PM, Dewan PC (1980b) Macrophage-like hemocytes of resistantBiomphalaria glabrata are cytotoxic for sporocysts of Schistosoma mansoni in vitro. J Parasitol 66: 413–419

    Article  PubMed  CAS  Google Scholar 

  • Bayne CJ, Loker ES, Yui MA (1986) Interactions between the plasma proteins ofBiomphalaria glabrata (Gastropoda) and the sporocyst tegument of Schistosma mansoni (Trematoda). Parasitology 92: 653–664

    Article  PubMed  CAS  Google Scholar 

  • Bayne CJ, Boswell CA, Yui MA (1987) Widespread antigenic cross-reactivity between plasma proteins of a gastropod and its trematode parasite. Dev Comp Immunol 11: 321–329

    Article  PubMed  CAS  Google Scholar 

  • Beck G, O’Brien RF, Habicht GS (1989) Invertebrate cytokines: the phylogenetic emergence of interleukin-1. Bioessays 11: 62–67

    Article  PubMed  CAS  Google Scholar 

  • Beck G, O’Brien RF, Habicht GS, Stillman DL, Cooper EL, Raftos DA (1993) Invertebrate cytokines III: Invertebrate interleukin-1-like molecules stimulate phagocytosis by tunicate and echinoderm cells. Cell Immunol 146: 284–299

    Article  PubMed  Google Scholar 

  • Becker W (1983) Purine metabolism in Biomphalaria glabrata under starvation and infection with Schistosoma mansoni. Comp Biochem Physiol 76B: 75–79

    Google Scholar 

  • Bender RC, Fryer SE, Bayne CJ (1992) Proteinase inhibitory activity in the plasma of a mollusc: evidence for the presence of a-macroglobulin in Biomphalaria glabrata. Comp Biochem Physiol 102B: 821–824

    CAS  Google Scholar 

  • Borth W (1992) α2-macroglobulin, a multifunctional binding protein with targeting characteristics. FASEB J 6: 3345–3353

    PubMed  CAS  Google Scholar 

  • Chagot D, Boulo V, Hervio D, Mialhe E, Bachere E, Mourton C, Grizel H (1992) Interactions between Bonamia ostreae (Protozoa: Ascetospora) and hemoeytes of Ostrea edulis andCrassostrea gigas (Mollusca: Bivalvia): entry mechanisms. J Invertebr Pathol 59: 241–249

    Article  Google Scholar 

  • Chen J-H, Bayne CJ (1994) The roles of carbohydrates in aggregation and adhesion of hemoeytes from the California mussel (Mytilus californianus). Comp Biochem Physiol 109A: 117–125

    Article  CAS  Google Scholar 

  • Cheng TC, Dougherty WJ (1989) Ultrastructural evidence for the destruction of Schistosoma mansoni sporocysts associated with elevated lysosomal emzyme levels in Biomphalaria glabrata. J Parasitol 75: 928–941

    Article  PubMed  CAS  Google Scholar 

  • Cheng TC, Downs JCU (1988) Intracellular acid phosphatase and lysozyme levels in subpopulations of oyster, Crassostrea virginica, hemoeytes. J Invertebr Pathol 52: 163–167

    Article  PubMed  CAS  Google Scholar 

  • Cheng TC, Garrabbrant TA (1977) Acid phosphatase in granulocytic capsules formed in strains of Biomphalaria glabrata totally and partially resistant to Schistosoma mansoni. Int J Parasitol 7: 467–472

    Article  PubMed  CAS  Google Scholar 

  • Cheng TC, Rodrick GE, Foley DA, Koehler SA (1975) Rlease of lysozyme form hemolymph cells of Mercenaria mercenaria during phagocytosis. J Invertebr Pathol 25: 261–265

    Article  PubMed  CAS  Google Scholar 

  • Chernin E (1966) Transplantation of larval Schistosoma mansoni from infected to unifected snails. J Parasitol 52: 473–482

    Article  PubMed  CAS  Google Scholar 

  • Chintala MM, Fisher WS (1991) Disease incidence and potential mechanisms of defense for MSX-resistant and -susceptible oysters held in Chesapeake Bay. J Shellfish Res 10: 439–443

    Google Scholar 

  • Connors VA, Yoshino TP (1990) In vitro effect of larval Schistosoma mansoni excretory-secretory products on phagocytosis-stimulated superoxide production hemoeytes from Biomphalaria glabrata. J Parasitol 76: 895–902

    Article  PubMed  CAS  Google Scholar 

  • Connors VA, Lodes MJ, Yoshino TP (1991) Identification of a Schistosoma mansoni sporocyst excretory-secretory antioxidant molecule and its effect on superoxide production by Biomphalaria glabrata hemoeytes. J Invertebr Pathol 58: 387–395

    Article  PubMed  CAS  Google Scholar 

  • Courch L, Hertel LA, Loker ES (1990) Humoral response of the snail Biomphalaria glabrata to trematode infection: observations on a circulating hemagglutinin. J Exp Zool 255: 340–349

    Article  Google Scholar 

  • Cort WW, Olivier L (1943) The development of the larval stages of Plagiorchis muris in the first intermediate host. J Parasitol 29: 81–99

    Article  Google Scholar 

  • Crews AE, Yoshino TP (1989)Schistosoma mansoni: effect of infection on reproduction and gonadal growth in Biomphalaria glabrata. Exp Parasitol 68: 326–324

    Article  PubMed  CAS  Google Scholar 

  • Damian RT (1964) Molecular mimicry: antigen sharing by parasite and host and its consequences. Am Nat 98: 129–149

    Article  Google Scholar 

  • Di Conza JJ, Basch PF (1974) Axenic cultivation of Schistosoma mansoni sporocysts. J Parasitol 60: 757–763

    Article  Google Scholar 

  • Dikkeboom R, Bayne CJ, van der Knaap WPW, Tijnagel JMGH (1988) Possible role of reactive forms of oxygen in in vitro killing of Schistosoma mansoni sporocysts by hemoeytes of Lymnaea stagnalis. Parasitol Res 75: 148–154

    Article  PubMed  CAS  Google Scholar 

  • Dissous C, Capron A (1989) Schistosoma mansoni and its intermediate host Biomphalaria glabrata express a common 39 kilodalton acidic protein. Mol Biochem Parasitol 32:49–56

    Article  PubMed  CAS  Google Scholar 

  • Dissous C, Grzych JM, Capron A (1986) Schistosoma mansoni shares a protective oligosaccharide epitope with fresh water and marine snails. Nature 323: 443–445

    Article  PubMed  CAS  Google Scholar 

  • Dissous C, Torpier G, Duvaux-Miret O, Capron A (1990) Structural homology of tropomyosins from the human trematode Schistosoma mansoni and its intermediate host Biomphalaria glabrata. Mol Biochem Parasitol 43: 245–256

    Article  PubMed  CAS  Google Scholar 

  • Font WF (1980) Effects of hemolymph of the American oyster, Crassostrea virginica, on marine cercariae. J Invertebr Pathol 36: 41–47

    Article  Google Scholar 

  • Ford SE (1988) Host-parasite interactions in eastern oysters selected for resistance to Haplosporidium nelsoni (MSX) disease: survival mechanisms against a natural pathogen. Am Fish Soc Spec Publ 18: 206–224

    Google Scholar 

  • Ford SE, Ashton-Aleox KA, Kanaley SA (1993) In vitro interactions between bivalve hemocytes and the oyster pathogen Haplosparidium nelsoni (MSX). J Parasitol 79: 255–265

    Article  Google Scholar 

  • Frandsen F (1979) Discussion of the relationship between Schistosoma and their intermediate hosts, assessment of the degree of host-parasite compatibility, and evaluation of schistosome taxonomy. Z Parasitenkd 58: 275–296

    Article  PubMed  CAS  Google Scholar 

  • Fryer SE, Bayne CJ (1990) Schistosoma mansoni modulation of phagocytosis in Biomphalaria glabrata. J Parasitol 76: 45–52

    Article  PubMed  CAS  Google Scholar 

  • Gauthier JD, Vasta GR (1993) Continuous in vitro culture of the Eastern oyster parasite Perkinsus marinus. J Invertebr Pathol 62: 321–323

    Article  Google Scholar 

  • Granath WO, Yoshino TP (1983) Lysosomal enzyme activities in susceptible and refractory strains Biomphalaria glabrata during the course of infection with Schistosoma mansoni. J Parasitol 69: 1018–1026

    Article  PubMed  CAS  Google Scholar 

  • Granath WO, Yoshino TP (1984) Schistosoma mansoni: passive transfer of resistance by serum in the vector snail Biomphalaria glabrata. Exp Parasitol 58: 188–193

    Article  PubMed  Google Scholar 

  • Harris ICR, Cheng TC (1975) The encapsulation process inBiomphalaria glabrata experimentally infected with the metastrogylidAngiostrongylus cantonensis: light microscopy. Int J Parastiol 5: 521–528

    Article  CAS  Google Scholar 

  • Harris RA, Preston TM, Southgate VR (1993) Purification of an agglutinin from the haemolymph of the snail Bulinus nasutus and demonstration of related proteins in otherBulinus spp. Parasitology 106: 127–135

    Article  PubMed  CAS  Google Scholar 

  • Hervio D, Chagot D, Miahle E, Grizel H (1989) Chemiluminescent responses of Ostrea edulis and Crassostrea gigas hemocytes to Bonamie ostreae (Ascetospora). Dev Comp Immunol 13: 449

    Article  Google Scholar 

  • Howland KH, Cheng TC (1982) Identification of bacterial chemoattractants for oyster (Crassostrea virginica) hemocytes. J Invertebr Pathol 39: 123–132

    Article  CAS  Google Scholar 

  • Iwanaga Y, Tsuji M (1985) Studies on host-parasite relationship between Schistosoma japonicum and Oncomelania snails. 1. Antigenic communities between the Chinese strain of Schistosoma japonicum adult worm and Oncomelania snails. Jpn J Parasitol 34: 1–6

    Google Scholar 

  • Jeong KH, Sussman S, Rosen SD, Lie KJ, Heyneman D (1981) Distribution and variation of hemagglutinating activity in the hemolymph of Biomphalaria glabrata. J Invertebr Pathol 38:256–263

    Article  PubMed  CAS  Google Scholar 

  • Kechemir N, Combes C (1982) Développment due trématodeSchistosoma haematobium après transplanation microchirurgicale chez le gastéropode Planorbis metidjensis. CR Acad Sci Paris 295: 505–508

    Google Scholar 

  • Klein (1989) Are invertebrates capable of anticipatory immune responses? Scan J Immunol 29: 499–505

    Article  CAS  Google Scholar 

  • Lewis FA, Richards CS, Knight M, Cooper LA, Clark B (1993) Schistosoma mansoni: analysis of an unusual infection phenotype in the intermediate host snail Biomphalaria glabrata, Exp Parasitol 77: 349–361

    Article  PubMed  CAS  Google Scholar 

  • Lie KJ, Jeong KH, Heyneman D (1980) Tissue reactions induced by Schistosoma mansoni in Biomphalaria glabrata. Ann Trop Med Parasitol 74: 157–166

    PubMed  CAS  Google Scholar 

  • Lie KJ, Jeong KH, Heyneman D (1981) Selective interference with granulocyte function induced by Echinostoma paraensei (Trematoda) larvae in Biomphalaria glabrata (Mollusca). J Parasitol 67: 790–796

    Article  PubMed  CAS  Google Scholar 

  • Lie KJ, Jeong KH, Heyneman D (1987) Molluscan host reactions to helminthic infections. In: Soulsby EJL (ed) Immune responses in parasitic infection. CRC Press, Boca Raton, pp 211–270

    Google Scholar 

  • Lim SHK (1970) Parameters and mechanisms of antagonistic interactions between Schistosoma mansoni andParyphostomum segregatum in the snail Biomphalaria glabrata. Doctoral Dissertation, Univ California, San Francisco

    Google Scholar 

  • Lodes MJ, Yoshino TP (1989) Characterization of excretory-secretory proteins synthesized in vitro by Schistosoma mansoni primary sporocysts. J Parasitol 75: 853–862

    Article  PubMed  CAS  Google Scholar 

  • Lodes MJ, Yoshino TP (1990) The effect of schistosome excretory-sectory products on Biomphalaria glabrata hemocyte motility. J Invertebr Pathol 56: 75–85

    Article  PubMed  CAS  Google Scholar 

  • Lodes MJ, Yoshino TP (1993) Polypeptides synthesized in vitro by Biomphalaria glabrata hemocytes bind toSchistosoma mansoni primary sporocysts. J Invertebr Pathol 61: 117–122

    Article  PubMed  CAS  Google Scholar 

  • Lodes MJ, Conners VA, Yoshino TP (1991) Isolation and functional characterization of snail hemocyte-modulating polypeptide from primary sporocyts of Schistosoma mansoni. Mol Biochem Parasitol 49: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Loker ES, Bayne CJ (1982) In vitro encounters between Schistosoma mansoni primary sporocysts and hemolymph components of susceptible and resistant strains of Biomphalaria glabrata. Am J Trop Med Hyg 31: 999–1005

    PubMed  CAS  Google Scholar 

  • Loker ES, Bayne CJ, Buckley PM, Kruse KT (1982) Ultrastructure of encapsulation of Schistosoma mansoni mother sporocysts by hemocytes of juveniles of the 10-R2 strain of Biomphalaria glabrata. J Parasitol 68: 84–94

    Article  PubMed  CAS  Google Scholar 

  • Loker ES, Cimino DF, Stryker GA, Hertel LA (1987) The effect of size of M-line Biomphalaria glabrata on the course of development ofEchinostoma paraensei. J Parasitol 73: 1090–1098

    Article  PubMed  CAS  Google Scholar 

  • Loker ES, Boston ME, Bayne CJ (1989) Differential adherence of M line Biomphalaria glabrata hemocytes to Schistosoma mansoni and Echinostoma paraensei larvae, and experimental manipulation of hemocyte binding. J Invertebr Pathol 54: 260–268

    Article  PubMed  CAS  Google Scholar 

  • Loker ES, Cimino DF, Hertel LA (1992) Excretory-secretory products of Echinostoma paraensei sporocysts mediate interference withBiomphalaria glabrata hemocyte function. J Parasitol 78: 104–115

    Article  PubMed  CAS  Google Scholar 

  • Loker ES, Couch L, Hertel LA (1994) Elevated agglutinin titres in plasma of Biomphalaria glabrata exposed toEchinostoma paraensei: characterization and functional relevance of a trematode-induced response. Parasitoloty 108: 17–26

    Article  CAS  Google Scholar 

  • LoVerde PT, Shoulberg N, Gherson J (1984) Role of cellular and humoral components in the encapsulation response of Biomphalaria glabrata to Schistosoma mansoni sporocysts in vitro. In: Cohen E (ed) Recognition proteins, receptors, and probes: invertebrates. AR Liss, New York, pp 17–29

    Google Scholar 

  • Mandal C, Biswas M, Nagpurkar A, Sailen M (1991) Isolation of a phosphoryl choline-bining protein from the hemolymph of the snail Achatina fulica. Dev Comp Immunol 15: 227–239

    Article  PubMed  CAS  Google Scholar 

  • McKerrow JH, Jeong KH, Beckstead JH (1985) Enzyme histochemical comparison ofBiomphalaria glabrata amoebocytes with human granuloma macrophages. J Leukocyte Biol 37: 341–347

    PubMed  CAS  Google Scholar 

  • Meuleman EA, Lyaruu DM, Khan MA, Holzmann PJ, Sminia T (1978) Ultrastructural changes in the body wall of Schistosoma mansoni during the transformation of the miracidium into the mother sporocyst in the snail host Biomphalaria pfeifferi. Z Parasitenkd 56: 227–242

    Article  PubMed  CAS  Google Scholar 

  • Meuleman EA, Huyer AR, Luub TWJ (1984) Infection ofLymnaea stagnalis with miracidia of Trichobilharzia ocellata. Z Parasitenkd 70: 275–278

    Article  Google Scholar 

  • Monroy F, Loker ES (1993) Production of heterogeneous carbohydrate-binding proteins by the host snail Biomphalaria glabrata following exposure to Echinostoma paraensei and Schistosoma mansoni. J Parasitol 79: 416–423

    Article  PubMed  CAS  Google Scholar 

  • Monroy F, Hertel LA, Loker ES (1992) Carbohydrate-binding plasma proteins from the gastropod Biomphalaria glabrata: strain specificity and the effects of trematode infection. Dev Comp Immunol 16: 355–366

    Article  PubMed  CAS  Google Scholar 

  • Monteil J-F, Matricon-Gondran M (1991) Interactions between the snail Lymnaea truncatula and the plagiorchid trematodeHaplometra cylindracea. J Invertebr Pathol 58: 127–135

    Article  Google Scholar 

  • Mourton C, Boulo V, Chagot D, Hervio D, Bachere E, Mialhe E, Grizel H (1992) Interactions between Bonamia ostreae (Protozoa: Ascetospora) and hemocytes of Ostrea edulis andCrassostrea gigas (Molluscs: Bivalvia) In vitro system establishment. J Invertebr Pathol 59: 235–240

    Article  Google Scholar 

  • Newton WL (1952) The comparative tissue reaction of two strains of Australorbis glabratus to infection with Schistosoma mansoni. J Parasitol 38: 362–366

    Article  PubMed  CAS  Google Scholar 

  • Noda S, Loker ES (1989a) Effects of infection with Echinostoma paraensei on the circulating hemocyte population of the host snail Biomphalaria glabrata. Parasitology 98: 35–41

    Article  PubMed  Google Scholar 

  • Noda S, Loker ES (1989b) Phagocytic activity of hemocytes of M-line Biomphalaria glabrata: effect of exposure to the trematode Echinostoma paraensei. J Parasitol 75: 261–269

    Article  PubMed  CAS  Google Scholar 

  • Olafsen J A (1986) Invertebrate lectins: biochemical heterogeneity as a possible key to their biological function. In: Brehelin M (ed) Immunity in invertebrates. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ottaviani E, Paemen LR, Cadet P, Stefano GB (1993) Evidence for nitric oxide production and utilization as a bacteriocidal agent by invertebrate immunocytes. Eur J Pharmacoe (Environ Toxicol Pharmocol) 248: 319–324

    Article  Google Scholar 

  • Pan SC-T (1980) The fine structure of the miracidium of Schistosoma mansoni. J Invertebr Pathol 36: 307–372

    Article  PubMed  CAS  Google Scholar 

  • Pipe RK (1992) Generation of reactive oxygen metabolites by the hemocytes of the mussel Mytilus edulis. Dev Comp Immunol 16: 111–122

    Article  PubMed  CAS  Google Scholar 

  • Preston TM, Southgate VR (1994) The species specificity of Bulinus-Schistosoma interactions. Parasitol Today 10: 69–73

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe NA (1985) Invertebrate immunity — a primer for the non-specialist. Immunol Lett 10: 253–270

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe NA, Rowley AF (eds) (1981) Invertebrate blood cells. Academic Press, London

    Google Scholar 

  • Renwrantz L (1983) Involvement of agglutinin (lectins) in invertebrate defense reactions: the immunobiological importance of carbohydrate-specific binding molecules. Dev Comp Immunol 7:603–608

    Article  CAS  Google Scholar 

  • Richards CS, Shade PC (1987) The genetic variation of compatibility ifBiomphalaria glabrata and Schistosoma mansoni J Parasitol 73: 1146–1151

    CAS  Google Scholar 

  • Richards CS, Knight M, Lewis FA (1992) Genetics ofBiomphalaria glabrata and its effect on the outcome of Schistosoma mansoni infection. Parasitol Today 8: 171–174

    Article  PubMed  CAS  Google Scholar 

  • Riley EM, Chappell LH (1992) Effect of infection with Diplostomum spathaceum on the internal defense system ofLymnaea stagnalis. J Invertebr Pathol 59: 190–196

    Article  Google Scholar 

  • Rondelaud D, Bouix-Busson D, Barthe D (1988) Relationship between shell height and a proliferative response of the amoebocyte-producing organ in two species ofLymnaea (Gastropoda: Mollusca) infected by Fasciola hepatica. J Invertebr Pathol 51: 294–295

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht H, Becker W, Schwanbek A (1989) Alterations in hemolymph components inBiomphalaria glabrata during long-term infection with Schistosoma mansoni. Parasitol Res 75: 233–237

    Article  PubMed  CAS  Google Scholar 

  • Salt G (1970) The cellular defence reactions of insects. Cambridge Monographs in Exp Biol 16 Cambridge Univ Press, Cambridge, 118 pp

    Google Scholar 

  • Schmid LS (1975) Chemotaxis of hemocytes from the snail Viviparus malleatus. J Invertebr Pathol 25: 125–132

    Article  Google Scholar 

  • Schneeweiss H, Renwrantz L (1993) Analysis of the attraction of haemocytes from Mytilus edulis by molecules of bacterial origin. Dev Comp Immunol 17: 377–387

    Article  PubMed  CAS  Google Scholar 

  • Sminia T, Barendsen L (1980) A comparative and enzyme histochemical study on blood cells of the freshwater snails Lymnaea stagnalis, Biomphalaria glabrata and Bulinus truncatus. J Morphol 165: 31–39

    Article  Google Scholar 

  • Sminia T, van der Knaap WPW (1986) Immunorecognition in invertebrates with special reference to molluscs. In: Brehelin M (ed) Immunity in invertebrates. Springer, Berlin Heidelberg New York, pp 113–124

    Google Scholar 

  • Sminia T, van der Knaap WPW (1987) Cells and molecules in molluscan immunology. Dev Comp Immunol 11: 17–28

    Article  PubMed  CAS  Google Scholar 

  • Sminia T, Borghart-Reinders E, van de Linde AW (1974) Encapsulation of foreign materials experimentally introduced into the freshwater snailLymnaea stagnalis. An electron microscopic and autoradiographic study. Cell Tissue Res 153: 307–326

    Article  PubMed  CAS  Google Scholar 

  • Southgate VR, Brown DS, Warlow A, Knowles RJ, Jones A (1989) The influence of Calicophoron microbothium on the susceptibility Bulinus tropicus toSchistosoma bovis. Parasitol Res 75: 381–391

    Article  PubMed  CAS  Google Scholar 

  • Spray FJ, Granath WO (1990) Differential binding of hemolymph proteins from schistosome-resistant and -susceptibleBiomphalaria glabrata to Schistosoma mansoni sporocysts. J Parasitol 76: 225–229

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JT, Spence JV (1994) Transfer of resistance to Schistosoma mansoni in Biomphalaria glabrata by allografts of amoebocyte-producing organ. J Parasitol 80: 449–453

    Article  PubMed  CAS  Google Scholar 

  • Thompson SN, Lee RW-K, Mejia-Scales V, El-Din MS (1993) Biochemical and morphological pathology of the foot of the schistosome vector Biomphalaria glabrata infected withSchistosoma manson. Parasitology 107: 275–285

    Article  PubMed  CAS  Google Scholar 

  • Thogersen IB, Salvesen G, Brucato FH, Pizzo SV, Enghild JJ (1992) Purification and characterization of an a-macroglobulin proteinase inhibitor from the mollusc Octopus vulgaris. Biochem J 285: 521–527

    PubMed  CAS  Google Scholar 

  • Toft CA, Aeschlimann A, Bolis L (eds) (1991) Parasite-host associations. Coexistence of conflict? Oxford Univ Press, New York

    Google Scholar 

  • Van der Knaap WPW, Loker ES (1990) Immune mechanisms in trematode-snail interactions. Parasitol Today 6: 175–182

    Article  PubMed  Google Scholar 

  • Van der Knaap WPW, Meuleman EA, Sminia T (1987) Alterations in the internal defense system of the pond snail Lymnaea stagnalis induced by infection with the schistosome Trichobilharzia ocellata. Parasitol Res 73: 57–65

    Article  PubMed  Google Scholar 

  • Van der Ploeg LHT, Cantor CR, Vogel HJ (eds) (1990) Immune recognition and evasion: molecular aspects of host-parasite interaction. Academic Press, San Diego

    Google Scholar 

  • Vinson SB (1993) Suppression of the insect immune system by parasitic hymenoptera. In: Pathak JPN (ed) Insect immunity. Kluwer, Dordrecht, pp 171–187

    Google Scholar 

  • Weston DS, Kemp WM (1993) Schistosoma mansoni:comparison of cloned tropomyosin antigens shared between adult parasites and Biomphalaria glabrata. Exp Parasitol 76: 358–370

    Article  PubMed  CAS  Google Scholar 

  • Weston DS, Schmitz, Kemp MW, Kunz W (1993) Cloning and sequencing of a complete myosin heavy chain cDNA from Schistosoma mansoni. Mol Biochem Parasitol 58: 161–164

    Article  PubMed  CAS  Google Scholar 

  • Weston DS, Allen B, Thakur A, LoVerde PT, Kemp WM (1994) Invertebrate host-parasite relationships: convergent evolution of a tropomyosin epitope between Schistosoma sp. Fasciola hepatica, and certain pulmonale snails. Exp Parasitol 78: 269–278

    Article  PubMed  CAS  Google Scholar 

  • Wright CA (1971) Flukes and Snails. Allen and Unwin, London

    Google Scholar 

  • Xu H, Miller S, Van Keulen H, Wawrzynski MR, Rekosh DM, LoVerde PT (1989) Schistosoma mansoni tropomyosin: cDNA characterization, sequence, expression and gene product localization. Exp Parasitol 69: 373–392

    Article  PubMed  CAS  Google Scholar 

  • Yoshino TP, Boswell CA (1986) Antigen sharing between larval trematodes and their snail hosts: how real a phenomenon in immune evasion? Symp Zool Soc Lond 56: 221–238

    Google Scholar 

  • Zelck U, Becker W (1990) Lectin binding to cells of Schistosoma mansoni sporocysts and surrounding Biomphalaria glabrata tissue. J Invertebr Pathol 55: 93–99

    Article  PubMed  CAS  Google Scholar 

  • Zelck U, Becker W (1992) Biomphalaria glabrata:influence of calcium, lectins, and plasma factors on in vitro phagocytic behavior of hemocytes of noninfected or Schistosoma mansoni infected snails. Exp Parasitol 75: 126–136

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fryer, S.E., Bayne, C.J. (1996). Host—Parasite Interactions in Molluscs. In: Rinkevich, B., Müller, W.E.G. (eds) Invertebrate Immunology. Progress in Molecular and Subcellular Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79735-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79735-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79737-8

  • Online ISBN: 978-3-642-79735-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics