Skip to main content

Humoral Factors in Tunicates

  • Chapter
Invertebrate Immunology

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 15))

Abstract

It is well known that vertebrates have a sophisticated recognition system known as the immune system. Using this immune system, animals can eliminate invasive microorganisms, such as viruses, bacteria, and parasites, and can also clear denatured cells and metabolic wastes from their bodies. Furthermore, they can recognize allogeneic tissues and organs transplanted from other individuals and reject them as nonself. In the complex responses of the immune system, humoral factors (e.g., antibodies, complement, hemagglutinins, lectins, and cytokines) and cellular components (e.g., lymphocytes, macrophages, and natural killer cells) are involved in mutual relationships. Recognition of self vs. nonself should be important not only for vertebrates, but also for all other living things, so as to maintain the individuality of the organism and species levels. Therefore, it is interesting to study the evolution of the immune system from the lower invertebrates to the vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson RS, Good RA (1975) Naturally-occurring hemagglutinin in a tunicate Halocynthia pyriformis. Biol Bull 148: 357–369

    Article  PubMed  CAS  Google Scholar 

  • Arizza V, Parrinello N, Sehimmenti S (1991) In Vitro release of lectins by Phallusia mamillata hemocytes. Dev Comp Immunol 15: 219–226

    Article  PubMed  CAS  Google Scholar 

  • Azumi HK, Yokosawa H, Ishii S (1987) N-Aeetyl-galactosamine-specific lectin, a novel lectin in the haemolymph of the ascidian Halocynthia roretzi: isolation, characterization and comparison with galactose-specific lectin. Comp Biochem Physiol 88B: 375–381

    Google Scholar 

  • Azumi K, Yokosawa H, Ishii S (1990a) Halocyamines: novel antimicrobial tetrapeptide-like substances isolated from the hemocytes of the solitary ascidians Halocynthia roretzi. Biochemistry 29: 159–165

    Article  PubMed  CAS  Google Scholar 

  • Azumi K, Yoshimizu M, Ezura Y, Yokosawa H (1990b) Inhibitory effect of halocyamine, an antimicrobial substance from ascidian hemocytes, on the growth of fish viruses and marine bacteria. Experientia 46: 1066–1068

    Article  PubMed  CAS  Google Scholar 

  • Azumi K, Ozeki S, Yokosawa H, Ishii S (1991a) A novel lipopolysaccharide-biftding hemagglutinin isolated from hemocytes of the solitary ascidian, Halocynthia roretzi: it can agglutinate bacteria. Dev Comp Immunol 15: 9–16

    Article  PubMed  CAS  Google Scholar 

  • Azumi K, Yokosawa H, Ishii S (1991b) Lipopolysaccharide induces release of a metallo-protease from hemocytes of the ascidian, Halocynthia roretzi. Dev Comp Immunol 15: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Bancroft FW (1903) Variation and fusion of colonies in compound ascidian. Proc Calif Acad Sci Ser 3: 137–186

    Google Scholar 

  • Beck G, Habicht GS (1986) Isolation and characterization of a primitive IL-1-like protein from an invertebrate, Asterias forbesi. Proc Natl Acad Sci USA 83: 7429–7433

    Article  PubMed  CAS  Google Scholar 

  • Beck G, O’Brien RF, Habicht GS (1989a) Invertebrate cytokines: the phylogenetic emergence of interleukin-1. Bio Essays 11: 62–67

    CAS  Google Scholar 

  • Beck G, Vasta GR, Marchalonis J J, Habicht GS (1989b) Characterization of interleukin-1 activity in tunicates. Comp Biochem Physiol 92B: 93–98

    CAS  Google Scholar 

  • Berrill NJ (1955) The origin of vertebrates. Oxford Univ Press, London

    Google Scholar 

  • Bretting H, Renwrantz L (1973) Untersuchungen von Invertebraten des Mittelmeeres auf ihren Gehalt an hämagglutinierenden Substanzen. Z Immun-Forsch 145: 242–249

    CAS  Google Scholar 

  • Burnet M (1968) Evolution of the immune process in vertebrates. Nature 218: 426–430

    Article  PubMed  CAS  Google Scholar 

  • Cammarata M, Parrinello N, Arizza V (1993) In vitro release of lectins fromPhallusia mamillata hemocytes after their fractionation on a density gradient. J Exp Zool 266: 319–327

    Article  CAS  Google Scholar 

  • Coombe DR, Schlüter SF, Ey PL, Jenkin CR (1982) Identification of the HA-2 agglutinin in the haemolymph of the ascidian Botrylloides leachii as the factor promoting adhesion of sheep erythrocytes to mouse macrophages. Dev Comp Immunol 6: 65–74

    Article  PubMed  CAS  Google Scholar 

  • Coombe DR, Ey PL, Jenkin CR (1984) Ascidian haemagglutinins: incidence in various species, binding specificities and preliminary characterization of selected agglutinins. Comp Biochem Physiol 77B: 811–819

    CAS  Google Scholar 

  • Drickamer K (1988) Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem 263: 9557–9560

    PubMed  CAS  Google Scholar 

  • Form DM, Warr GW, Marchalonis JJ (1979) Isolation and characterization of a lectin from the hemolymph of a tunicate, Halocynthia pyriformis. Fed Proc 38: 934

    Google Scholar 

  • Fuke MT (1979) Studies on the coelomic cells of some Japanese ascidians. Bull Mar Biol Stn Asamushi Tohoku Univ 16: 143–159

    Google Scholar 

  • Fuke MT (1980) “Contact reactions” between xenogeneic or allogeneic coelomic cells of solitary ascidians. Biol Bull 158: 304–315

    Article  Google Scholar 

  • Fuke MT, Sugai T (1972) Studies on the naturally occurring hemagglutinin in the coelomic fluid of an ascidian. Biol Bull 143: 140–149

    Article  Google Scholar 

  • Ireland CM, Durso AR Jr, Newmann RA, Hacker MP (1982) Antineoplastic cyclic peptides from the marine tunicate Lissoclinum patella. J Org Chem 47: 1807–1811

    Article  CAS  Google Scholar 

  • Ishibashi M, Ohizumi Y, Sasaki T, Nakamura H, Hirata Y, Kobayashi J (1987) Pseudodistomins A and B, novel antineoplastic piperidine alkaloids with calmodulin antagonistic activity from the Okinawan tunicate Pseudodistoma kanoko. J Org Chem 52: 450–453

    Article  CAS  Google Scholar 

  • Jackson AD, Smith VJ, Peddie CM (1993) In vitro phenoloxidase activity in the blood of Ciona intestinalis and other ascidians. Dev Comp Immunol 17: 97–108

    Article  PubMed  CAS  Google Scholar 

  • Katow H, Watanabe H (1980) Fine structure of fusion reaction in compound ascidian Botryllus primigenus Oka. Dev Biol 76: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Kawamura K, Fujiwara S, Sugino YM (1991) Budding-specific lectin induced in epithelial cells is an extracellular matrix component for stem cell aggregation in tunicates. Development 113: 905–1005

    Google Scholar 

  • Kelly KL, Cooper EL, Raftos DA (1992) Purification and characterization of a humoral opsonin from the solitary urochordate Styela clava. Comp Biochem Physiol 103B: 749–753

    CAS  Google Scholar 

  • Kelly KL, Cooper EL, Raftos DA (1993a) A humoral opsonin from the solitary urochordate Styela clava. Dev Comp Immunol 17: 29–39

    Article  PubMed  CAS  Google Scholar 

  • Kelly KL, Cooper EL, Raftos DA (1993b) Cytokine-like activities of a humoral opsonin from the solitary urochordate Styela clava. Zool Sci 10: 57–64

    CAS  Google Scholar 

  • Kobayshi J, Harbour GC, Gilmore J, Rinehart KL Jr (1984) Eudistomins A, D, G, H, I, J, M, N, O, P, and Q bromo-, hydroxy-, pyrrolyl-, and 1-pyrrolinyl-B-carbolines from the antiviral Caribbean tunicate Eudistoma olivaceum. J Am Chem Soc 106: 1526–1528

    Article  Google Scholar 

  • Kobayashi J, Cheng JF, Nakamura H, Ohizumi Y, Hirata Y, Sasaki T, Ohta T, Nozoe S (1988) Ascididemin, a novel pentacyclic alkaloid with potent antileukemic activity from the Okinawan tunicate Didemnum sp. Tetrahedron Lett 29: 1177–1180

    Article  CAS  Google Scholar 

  • Kumazaki T, Hoshiba N, Yokosawa H, Ishii S (1990) Primary structure of ascidian trypsin inhibitors in the hemolymph of a solitary ascidian, Halocynthia roretzi. J Biochem 107: 409–413

    PubMed  CAS  Google Scholar 

  • Mukai H (1967) Experimental alteration of fusibility in compound ascidians. Sci Rep Tokyo Kyoiku Daigaku 13B: 51–73

    Google Scholar 

  • Mukai H, Watanabe H (1974) On the occurrence of colony specificity in some compound ascidians. Biol Bull 147: 411–421

    Article  PubMed  CAS  Google Scholar 

  • Oka H, Watanabe H (1957) Colony-specificity in compound ascidians as tested by fusion experiments (A preliminary report). Proc Jpn Acad 33: 657–659

    Google Scholar 

  • Oka H, Watanabe H (1960) Problems of colony-specificity in compound ascidians. Publ Mar Biol Stn Asamushi 10: 153–155

    Google Scholar 

  • Parrinello N, Arizza V (1988) D-galactose binding lectins from the tunicate Ascidia malaca: Sub-unit characterization and hemocyte surface distribution. Dev Comp Immunol 12: 495–507

    Article  PubMed  CAS  Google Scholar 

  • Parrinello N, Arizza V (1989) Sugar specific cellular lectins of Phallusia mamillata hemocytes: purification, characterization and evidence for cell surface localization. Dev Comp Immunol 13: 113–121

    Article  PubMed  CAS  Google Scholar 

  • Parrinello N, Canicatti C (1982) Carbohydrate binding specificity and purification by biospecific affinity chromatography ofAscidia malaca Traust. hemagglutinins. Dev. Comp Immunol 6: 53–64

    Article  PubMed  CAS  Google Scholar 

  • Parrinello N, Canicatti C (1983) a-Lactose binding hemagglutinins from the ascidian Phallusia mamillata (Cuv.) Biol Bull 164: 124–135

    Article  CAS  Google Scholar 

  • Parrinello N, Patricolo E (1975) Erythrocyte agglutinins in the blood of certain ascidians. Experientia 31: 1092–1093

    Article  PubMed  CAS  Google Scholar 

  • Parrinello N, Arizza V, Cammarata M, Parrinello DM (1993) Cytotoxic activity of Ciona intestinalis (Tunicata) hemocytes: properties of the in vitro reaction against erythrocyte targets. Dev Comp Immunol 17: 19–27

    Article  PubMed  CAS  Google Scholar 

  • Raftos DA, Cooper EL, Habicht G, Beck G (1991) Invertebrate cytokines: tunicate cell proliferation stimulated by an endogenous hemolymph factor. Proc Natl Acad Sci USA 88: 9518–9522

    Article  PubMed  CAS  Google Scholar 

  • Raftos DA, Cooper EL, Stillman DL, Habicht GS, Beck G (1992) Invertebrate cytokines II: release of interleukin-l-like molecules from tunicate hemocytes stimulated with zymosan. Lymphokine Cytokine Res 11: 235–240

    PubMed  CAS  Google Scholar 

  • Rinehart KL Jr, Gloer JB, Hughes RG Jr, Renis HE, McGovern JP, Swynenberg EB, Stringfellow DA, Kuentzel SL, Li LH (1981) Didemnins: antiviral and antitumor depsipeptides from a Caribbean tunicate. Science 212: 933–935

    Article  PubMed  CAS  Google Scholar 

  • Rinehart KL Jr, Kobayashi J, Harbour GC, Hughes RG Jr, Mizsak SA, Scahill TA (1984) Eudistomins C, E, K, and L, potent antiviral compounds containing a novel oxathiazepine ring from the Caribbean tunicate Eudistoma olivaceum. J Am Chem Soc 106: 1524–1526

    Article  CAS  Google Scholar 

  • Rosenshein IL, Schlutter SF, Vasta GR, Marchalonis JJ (1985) Phylogenetic conservation of eavy chain determinants of vertebrates and protochordates. Dev Comp Immunol 9: 783–795

    Article  PubMed  CAS  Google Scholar 

  • Sabbadin A (1962) Le basi genetiche della capacita di fusione fra colonie in Botryllus schlosseri (Ascidiacea). Rend Acad Naz Lincei Ser 8 32: 1031–1035

    Google Scholar 

  • Saito Y, Watanabe H (1982) Colony specificity in the compound ascidian, Botryllus scalar is. Proc Jpn Acad Ser B58: 105–108

    Article  Google Scholar 

  • Saito Y, Watanabe H (1984) Partial biochemical characterization of humoral factors involved in the nonfusion reaction of a botryllid ascidian, Botrylloids simodensis. Zool Sci 1: 229–235

    CAS  Google Scholar 

  • Scofield VL, Schlumpberger JM, West LA, Weissman IL (1982) Protochordate allorecognition is controlled by a MHC-like gene system. Nature 295: 499–502

    Article  PubMed  CAS  Google Scholar 

  • Sigel M, Lichter W, McCumber L, Ghaffar A, Wellham L, Hightower J (1984) A substance from the marine tunicateEcteinascidia turbinata with selective action on macrophages. In: Volkman M (ed) Mononuclear Phagocyte Biology. Marcel Dekker, New York, pp 451–471

    Google Scholar 

  • Smith VJ, Peddie CM (1992) Cell cooperation during host defense in the solitary tunicate Ciona intestinalis (L). Biol Bull 183: 211–219

    Article  Google Scholar 

  • Smith VJ, Soderhall K (1991) A comparison of phenoloxidase activity in the blood of marine invertebrates. Dev Comp Immunol 15: 251–261

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Takagi T, Furukohri T, Kawamura K, Nakauchi M (1990) A calcium-dependent galactose-binding lectin from the tunicate Polyandrocarpa misakiensis. J Biol Chem 265: 1274–1281

    PubMed  CAS  Google Scholar 

  • Tanaka K (1973) Allogeneic inhibition in a compound ascidian, Botryllusprimigenus Oka. II. Cellular and humoral responses in “nonfusion” reaction. Cell Immunol 7: 427–443

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Watanabe H (1973) Allogeneic inhibition in a compound ascidian, Botryllus primigenus Oka. I. Processes and features of “nonfusion” reaction. Cell Immunol 7: 410–426

    Article  PubMed  CAS  Google Scholar 

  • Taneda Y, Watanabe H (1982a) Effects of X-irradiation on colony specificity in the compound ascidian, Botryllus primigenus Oka. Dev Comp Immunol 6: 665–673

    PubMed  CAS  Google Scholar 

  • Taneda Y, Watanabe H (1982b) Studies on colony specificity in the compound ascidian, Botryllus primigenus Oka. II. In vivo bioassay for analyzing the mechanism of “nonfusion” reaction. Dev Comp Immunol 6: 243–252

    Google Scholar 

  • Tyler A (1946) Natural heteroagglutinins in the body fluids and seminal fluids of various invertebrates. Biol Bull 90: 213–219

    Article  PubMed  CAS  Google Scholar 

  • Vasta GR, Marchalonis JJ (1983) Lectins from tunicates and cyclostomes: a biochemical characterization. In: Bog-Hansen Spengler (eds) Lectins: Biology, Biochemistry and Clinical Biochemistry. DeGruyter, Berlin pp 461–468

    Google Scholar 

  • Vasta GR, Marchalonis J J (1986) Galactosyl-binding lectins from the tunicate Didemnum candidum. J Biol Chem 261: 9182–9186

    PubMed  CAS  Google Scholar 

  • Vasta GR, Marchalonis JJ (1987) Lectins from protochordates as putative recognition molecules. In: Cooper EL, Kanglet C, Bierne J (eds) Developmental and comparative immunology. Alan R Liss, New York, pp 23–32

    Google Scholar 

  • Vasta GR, Hunt JC, Marchalonis JJ, Fish WW (1986) Galactosyl-binding lectins from the tunicate Didemnum candidum. Purification and physicochemical characterization. J Biol Chem 261: 9174–9181

    PubMed  CAS  Google Scholar 

  • Wright RK (1974) Protochordate immunity I. Primary immune response of the tunicate Ciona intestinalis to vertebrate erythrocytes. J Invertebr Pathol 24: 29–36

    Article  PubMed  CAS  Google Scholar 

  • Wright RK (1981) Urochordates. In: Ratcliffe NA, Rowley AF (eds) Invertebrate Blood Cells, vol 2. Academic Press, London, pp 565–626

    Google Scholar 

  • Wright RK, Cooper EL (1975) Immunological maturation in the tunicate Ciona intestinalis. Am Zool 15: 21–27

    Google Scholar 

  • Wright RK, Cooper EL (1984) Protochordate immunity - II. Diverse hemolymph lectins in the solitary tunicate Styela clava. Comp Biochem Physiol 79B: 269–277

    CAS  Google Scholar 

  • Yokosawa H, Sawada H, Abe Y, Numakunai T, Ishii S (1982) Galactose-specific lectin in the hemolymph of solitary ascidian, Halocynthia roretzi: isolation and characterization. Biochem Biophys Res Commun 107: 451–457

    Article  PubMed  CAS  Google Scholar 

  • Yokosawa H, Odajima R, Ishii S (1985) Trypsin inhibitor in the hemolymph of a solitary ascidian, Halocynthia roretzi. Purification and characterization. J Biochem 97: 1621–1630

    PubMed  CAS  Google Scholar 

  • Yokosawa H, Harada K, Igarashi K, Abe Y, Takahashi K, Ishii S (1986) Galactose-specific lectin in the hemolymph of solitary ascidian, Halocynthia roretzi. Molecular, binding and functional properties. Biochem Biophys Acta 870: 242–247

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saito, Y. (1996). Humoral Factors in Tunicates. In: Rinkevich, B., Müller, W.E.G. (eds) Invertebrate Immunology. Progress in Molecular and Subcellular Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79735-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79735-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79737-8

  • Online ISBN: 978-3-642-79735-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics