Skip to main content

A Joint GSFC/DMA Project for Improving the Model of the Earth’s Gravitational Field

  • Conference paper
Gravity and Geoid

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 113))

Abstract

The U.S. Defense Mapping Agency and the NASA Goddard Space Flight Center with the aid of other organizations such as The Ohio State University are cooperating in a joint effort to determine a significantly improved degree 360 spherical harmonic model representing the Earth’s gravitational potential. This new model will be of immediate use in defining a geoid undulation model that will be the basis for an enhanced WGS84 geoid.

The development of the new model is driven, in part, by the need to determine an accurate geoid undulation model that will be the reference surface for a World Height System to be implemented in the 1996 time period. In addition, the new geoid estimation will help satisfy increasingly important studies in ocean circulation (sea surface topography) and geodetic positioning through GPS.

The new model estimation will incorporate existing and new satellite data. New data will include GPS tracking of Topex/Poseidon, Doris tracking of several satellites, altimeter data from Topex/Poseidon, and ERS-1 and Doppler data from satellites at inclinations not covered or weakly represented in previous solutions.

The surface gravity data to be used in the new solution will be based on an updated 30’ mean anomaly data base developed at the DMA Aerospace Center. This new data set will incorporate a substantial amount of new data that has, and will, become available in Europe, the FSU, South America, Greenland, Africa, Asia and Antarctica. Anomaly values in areas such as Canada, the United States and Australia will be based on updated data files. This data will be used, after suitable corrections, to form normal equations that can be used with the satellite derived normal equations.

In addition, 30’x30’ mean anomalies derived from the Geosat Geodetic Mission satellite altimeter data will be used in the project. The file will be merged with the files based on the surface terrestrial data. In areas where no data exists, anomaly estimates will be made from new elevation data through topographic isostatic models to ultimately yield a global 30’ anomaly file. In addition, an updated l°xl° anomaly file based on terrestrial data (both land and ocean) will be determined.

The final stage of the data processing will be the development of several degree 360 models using different data sets and weighting procedures. The current plan is to use existing software, for the combination solution, with minimum modifications to assure a timely effort. Several preliminary models will be made available to the international community for evaluation. A final model will be selected based on extensive tests of the preliminary models. The final model and accuracy estimates will be released in mid 1996. The model will be used to determine accurate geoid undulations that will be available in gridded form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balasubramania, N. (1994), Definition and Realization of a Global Vertical Datum, Rept. No. 427, Dept. of Geodetic Science and Surveying, The Ohio State University, Columbus.

    Google Scholar 

  • Bašić, T. and R.H. Rapp (1992), Oceanwide Prediction of Gravity Anomalies and Sea Surface Heights Using Geos- 3, Seasat and Geosat Altimeter Data and ETOP5U Bathymetric Data, Rept. No. 416, Dept. of Geodetic Science and Surveying, The Ohio State University, Columbus.

    Google Scholar 

  • Bašić, T., H. Denker, P. Knudsen, D. Solheim, and W. Torge (1990), A New Geopotential Model Tailored to Gravity Data in Europe, in Gravity, Gradiometry and Gravimetry, ed. by R. Rummel and R.G. Hipkin, IAG Symp. 103, pp. 109–118, Springer-Verlag.

    Google Scholar 

  • Denker, H. and R.H. Rapp (1990), Geodetic and Oceanographic Results from the Analysis of 1 Year of Geosat Data, J. Geophys. Res., 95 (C8), 13,151–13,168.

    Article  Google Scholar 

  • Denker, H., D. Behrend, W. Torge (1993), The European Geoid Project: Progress Report, in Pros. of Session G3, European Geophysical Society, XVIII General Assembly, Wiesbaden, Germany, Kort-OG Matrikelstyrelsen (Geodetic Division), Denmark.

    Google Scholar 

  • Featherstone, W.E., and J.G. Olliver (1993), The Gravimetric Geoid of the British Isles Computed Using a Modified Stokes’ Integral, in Proc. of Session G3, European Geophysical Society, XVIII General Assembly, Wiesbaden, Germany, Kort-OG Matrikelstyrelsen (Geodetic Division), Denmark.

    Google Scholar 

  • Forsberg, R. (1987), A New Covariance Model for Inertial Gravimetry and Gradiometry, J. Geophys. Res., 92, 1305–1310.

    Article  Google Scholar 

  • Gruber, T. and M. Anzenhofer (1993), The GFZ 360 Gravity Field Model, presentation at the European Geophysical Society mtg., Wiesbaden.

    Google Scholar 

  • Kenyon, S. (1994), Mean Anomaly Computation, prepared for WG II, DMAAC, St. Louis, MO, July.

    Google Scholar 

  • Knudsen, P. (1994), Estimation of Sea Surface Topography in the Norwegian Sea Using Gravimetry and Geosat Altimetry, Bulletin Geodesique, 66, 1.

    Google Scholar 

  • Kumar, M. (1994), A New Concept for Defining and Surveying Time-Invariant Bathymetry, 13th UN Regional Cartographic Conference for Asia and the Pacific, Beijing.

    Google Scholar 

  • Lerch, F.-J. (1991), Optimum Data Weighting and Error Calibration for Estimation of Gravitational Parameters, Bulletin Geodesique, 65, 44–52.

    Article  Google Scholar 

  • Lerch, F.J., N.K. Pavlis and J.C. Chang (1993), High-Degree Gravitational Modeling: Quadrature Formulae versus a Block-Diagonal Normal Matrix Inversion, presented at the EGS Meeting, Wiesbaden, Germany.

    Google Scholar 

  • Malys, S. and J. Slater, (1994) Maintenance and Enhancement of the World Geodetic System 1984, paper presented at the ION Conference, Salt Lake City.

    Google Scholar 

  • Marsh, J.G., F.J. Lerch, C.J. Koblinsky, S.M. Klosko, J.W. Robbins, R.G. Williamson, and G.B. Patel (1990), Dynamic Sea Surface Topography, Gravity and Improved Orbit Accuracies from the Direct Evaluation of SEASAT Altimeter Data, J. Geophys. Res., 95 (C8), 13,129–13.150.

    Article  Google Scholar 

  • Milbert, D. (1993), GEODD93: A High Resolution Geoid for the United States, G&GS Update, Coast and Geodetic Survey, Vol. 5, No. 3, Silver Spring, MD.

    Google Scholar 

  • Nerem, R.S., B.D. Tapley, and C.-K. Shun (1990), Determination of the Ocean Circulation Using GEOSAT Altimetry, J. Geophys. Res., 95 (C8), 3163–3179.

    Article  Google Scholar 

  • Nerem, R.S. et al. (1994), A Preliminary Evaluation of Ocean Topography from the TOPEX/POSEIDON Mission, J. Geophys. Res. - Oceans, in press.

    Google Scholar 

  • Nerem, R.S. et al. (1994), Gravity Model Development for TOPEX/POSEIDON Joint Gravity Models 1 and 2, J. Geophys. Res. - Oceans, in press.

    Google Scholar 

  • Nerem, R.S., C. Jekeli, W.M. Kaula (1994), Gravity Field Determination and Characteristics: Retrospective and Prospective, J. Geophys. Res. - Solid Earth, in press.

    Google Scholar 

  • Pavlis, N. and R.H. Rapp (1990), The Development of an Isostatic Gravitational Model to Degree 360 and Its Use in Global Gravity Modelling, Geophys. J. Int., 100, 369–378.

    Google Scholar 

  • Rapp, R.H. and N. Balasubramania (1992), sA Conceptual Formulation of a World Height System, Rept. No. 421, Dept. of Geodetic Science and Surveying, The Ohio State University, Columbus.

    Google Scholar 

  • Rapp, R.H. and N.K. Pavlis (1990), The Development and Analysis of Geopotential Coefficient Models to Spherical Harmonic Degree 360, J. Geophys. Res., 95, 21,885–21,911.

    Article  Google Scholar 

  • Rapp, R.H. and Y.M. Wang (1994), Dynamic topography estimates using Geosat data and a gravimetric geoid in the Gulf Stream Region, Geophys. J. Int., 117, 511–528.

    Google Scholar 

  • Rapp, R.H. (1993), A World Vertical Datum Proposal, presented at meeting of LAG/Special Study Group 5.149, IOS Deacon Laboratory, Wormly, England.

    Google Scholar 

  • Rapp, R.H. (1994), Global Geoid Determination, in Geoid and its Geophysical Interpretations, ed. by Vaniček and Christou, CRC Press, Boca Raton.

    Google Scholar 

  • Rapp, R.H. (1994), Y. Yi and Y.M. Wang, Mean Sea Surface and Geoid Gradient Comparisons with TOPEX Altimeter Data, J. Geophys. Res. - Oceans, in press.

    Google Scholar 

  • Rapp, R.H., Y.M. Wang, and N.K. Pavlis (1991), The Ohio State 1991 Geopotential and Sea Surface Topography Harmonic Coefficient Models, Rept. No. 410, Dept. of Geodetic Science and Surveying, The Ohio State University, Columbus.

    Google Scholar 

  • Stammer, D. and C. Wunsch (1994), Preliminary Assessment of the Accuracy and Precision of TOPEX/ POSEIDON Altimetric Data with Respect to the Large Scale Ocean Circulation, Journal of Geophysical Research - Oceans, in press.

    Google Scholar 

  • Tscherning, C.C. (1983), The Role of High Degree Spherical Harmonic Expansions in Solving Geodetic Problems, in Proc. Int. Assoc. of Geodesy Symposia, IUGG XVII General Assembly, Vol. 1, pp. 431–441, Dept. of Geodetic Science and Surveying, The Ohio State University, Columbus.

    Google Scholar 

  • van Hee, D. (1987), Preliminary Results from the Processing of a Limited Set of Geosat Radar Altimeter Data, Johns Hopkins APL Technical Digest, Vol. 8, No. 2, 201–205.

    Google Scholar 

  • Visser, P.N.A.M., K.F. Walker, B.A.C. Ambrosius (1993), Dynamic Sea Surface Topography from GEOSAT Altimetry, Marine Geodesy, Vol. 16, pp. 215–239.

    Article  Google Scholar 

  • Wang, Y.M. and R.H. Rapp (1994), Comparison Between Orthonormal and Spherical Harmonic Expansions of Dynamic Topography Using Topex Data, EOS, AGU, Vol. 75, No. 16, p. 108, Abstract.

    Google Scholar 

  • Xu, P. and R. Rummel (1991), A Quality Investigation of Global Vertical Datum Connection, Netherlands Geodetic Commission, New Series, No. 34, Delft.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rapp, R.H., Nerem, R.S. (1995). A Joint GSFC/DMA Project for Improving the Model of the Earth’s Gravitational Field. In: Sünkel, H., Marson, I. (eds) Gravity and Geoid. International Association of Geodesy Symposia, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79721-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79721-7_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59204-4

  • Online ISBN: 978-3-642-79721-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics