Two Branches of the Newton Potential and Geoid

  • Petr Holota
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 113)

Abstract

The present remarkable knowledge of the external gravity field and figure of the Earth is a result of an extensive synthesis of classical and modern geodetic methods. A great progress has been achieved in the theory and practice of the determination of the physical surface of the Earth and its external gravity field from surface measurements only, without needing information on the mass density distribution in the Earth’s interior. This classical direction is essentially associated with advances of a consistent abstraction in the interpretation of the subject of geodetic science. In the domain of modern methods space geodesy is extensively used and yields variety of geometrical and physical quantities related to the gravitational field and figure of the Earth. The accumulated wealth and importance of geodetic results can hardly be separated from reflections which prompt that geodesy experiences not only its internal development, but that parallely it is a powerful method of discovering new pieces of knowledge in which way it also extends its field of interest, see (Anderson and Cazenave, 1986), (Moritz, 1990) or (Kakkuri, 1993).

Keywords

Geophysics Arsenin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, A. and Cazenave, A. (eds., 1986). Space geodesy and geodynamics. Academic Press. London etc.Google Scholar
  2. Bers, L., John, F. and Schechter, M. (1964). Partial differential equations. John Wiley and Sons, Inc., New York -London -Sydney.Google Scholar
  3. Brovelli, M.A. and Sansò, F. (1993). Is the determination of the geoid a reasonable problem? Bull. No. 2, Int. Geoid Service. D.I.I.A.R.-Politecnico di Milano, pp. 53–65.Google Scholar
  4. Burša, M. and Pěč, K. (1993). Gravity field and dynamics of the Earth. Springer-Vlg., Berlin etc.Google Scholar
  5. Courant, R. (1964). Partial differential equations. Mir Publishers, Moscow (in Russian).Google Scholar
  6. Engels, J., Grafarend, E., Keller, W., Martinec, Z., Sansò, F. and Vaníček, P. (1993). The geoid as an inverse problem to be regularized. Anger, G., Gorenflo, R., Jochmann, H., Moritz, H. and Webers, W. (eds.): Inverse problems: Principles and applications in geophysics, technology and medicine. Akad. Vlg., Berlin, pp. 122–166.Google Scholar
  7. Grafarend, E.W. (1987). Geodesy -Third problem: Mass iregularities -the geoid. In: A collection of cotributions to IUGG symposium U1-Quo Vadimus, XIX Gen. Assembly, Vancouver. Inst. of Theoretical Geod., Techn. Univ. Graz, pp. 46–49.Google Scholar
  8. Grafarend, E.W. (1989). The geoid and the gravimetric boundary value problem. Report No. 18, Dept. of Geod., The Royal Inst. of Technology, Stockholm.Google Scholar
  9. Grafarend, E.W. (1994). What is a geoid? Vaníček, P. and Christou, N.T. (eds.): Geoid and its geophysical interpretation. CRC Press, Inc., Boca Raton etc.Google Scholar
  10. Gyunter, N.M. (1953). Theory of the potential and its use in fundamental problems of mathematical physics. Gosud. Izd. Techn. Teoret. Lit., Moscow (in Russian).Google Scholar
  11. Heiskanen, W.A. and Moritz, H. (1967). Physical geodesy. W.H. Freeman, San Francisco.Google Scholar
  12. Holota, P. (1983). The altimetry-gravimetry boundary value problem I: Linearization, Friedrichs’ inequality. Anno XLII-Boll. di Geod. e Sci. Affini-N. 1, pp. 13–32.Google Scholar
  13. Holota, P. (1987). Physical geodesy -Third problem. In: A collection of contributions to IUGG symposium U1-Quo Vadimus, XIX Gen. Assembly, Vancouver. Inst. of Theoretical Geod., Graz Techn. Univ., p. 50.Google Scholar
  14. Holota, P. (1988). On the theory of the geoid determination in continental areas. Proc. 6th Int. Symp. Geod. and Phys. of the Earth, Potsdam, 1988. Veröff. d. Zentralinst. f. Phys. d. Erde., Nr. 102, Potsdam, 1989, pp. 218–228.Google Scholar
  15. Hörmander, L. (1975). The boundary problems of physical geodesy. The Royal Inst. of Technology, Division of Geodesy, Stockhlom; also: Archive for Rational Mechanics and Analysis 62(1976), pp. 1–52.Google Scholar
  16. Jeffreys, H. (1960). The Earth its Origin, History and Physical Constitution. Izdatelstvo inostrannoy literatury, Moscow (in Russian).Google Scholar
  17. John, O. and Nečas, J. (1972). Equations of mathematical physics. Lecture Notes. SPN -Publishers, Prague (in Czech).Google Scholar
  18. Kakkuri, J. (eds., 1993). Geodesy and geophysics. Publ. No. 115 of the Finnish Geod. Inst., Helsinki.Google Scholar
  19. Kellogg, O.D.(1953). Foundations of potential theory. Dover Publications, Inc., New-York.Google Scholar
  20. Listing, J.B. (1872). Über unsere jetzige Kenntnis der Gestalt und Grösse der Erde. Akad. Göttingen Nachr.Google Scholar
  21. Lyusternik, L.A. and Sobolev, V.I. (1965). Foundations of functional analysis. Nauka Publishers, Moscow (in Russian).Google Scholar
  22. Malkin, N. (1935). Über die Bestimmung der Figure der Erde. Gerl. Beitr. Geoph., 45, p. 133.Google Scholar
  23. Matyska, C. (1986). The optimal shape design method applied to modelling thermal thinning of the oceanic litosphere near hot spots. Studia geophys. et geod. 30, pp. 356–375.CrossRefGoogle Scholar
  24. Molodensky, M.S. (1936). On the reduction of the gravity to the sea level for the non-regularized earth. Trudy TsNIIGAiK, Vol. 17, Moscow (in Russian).Google Scholar
  25. Molodensky, M.S. (1945). Fundamental problems of geodetic gravimetry, Trudy TsNIIGAiK, Vol. 42, Moscow (in Russian).Google Scholar
  26. Molodensky, M.S., Eremeev and Yurkina, M.I. (1960). Methods for study of the external gravitational field and figure of the Earth. Trudy TsNIIGAiK, Vol. 131, Moscow (in Russian).Google Scholar
  27. Moritz, H. (1961). Eine Integralgleichung des Geoids. Gerl. Beitr. Geoph., 70, pp. 373–379.Google Scholar
  28. Moritz, H. (1977). Der Begriff der mathematischen Erdgestallt seit Gauss. AVN, 4, pp. 133–138.Google Scholar
  29. Moritz, H. (1978). On the convergence of the spherical-harmonic expansion for the geopotential at the earth’s surface. Anno XXXVII-Boll, di Geod. e Sci. Affini-N. 2–3, pp. 363–381.Google Scholar
  30. Moritz, H. (1980). Advanced physical geodesy. H. Wichmann Vlg. Karlsruhe and Abacus Press Tunbridge Wells Kent.Google Scholar
  31. Moritz, H. (1987). Geodesy -Seven problems. In: A collection of contributions to IUGG symposium Ul-Quo Vadimus, XIX Gen. Assembly, Vancouver. Inst of Theoretical Geod., Techn. Univ. Graz, pp. 39–41.Google Scholar
  32. Moritz, H. (1990). The figure of the Earth -Theoretical geodesy and the Earth’s interior. H. Wichmann Vlg., Karlsruhe.Google Scholar
  33. Nečas, J. (1967). Les méthodes directes en théorie des équations elliptiques. Academia, Prague.Google Scholar
  34. Netuka, I. and Veselý, J. (1978). Harmonic continuation and removable singularities in the axiomatic potential theory. Math. Ann. 234, pp. 117–123.CrossRefGoogle Scholar
  35. Pick, M., Pícha, J. and Vyskočil V. (1973). Theory of the earth’s gravitational field. Elsevier, Amsterdam -Akademia, Prague.Google Scholar
  36. Rektorys, K. (1977). Variational methods. Reidel Co., Dordrecht-Boston.Google Scholar
  37. Taylor, A.E. (1973). Introduction to functional analysis. Academia, Prague (in Czech).Google Scholar
  38. Tikhonov, A.N. and Arsenin, V. Ya. (1979). Methods for solution of improperly posed problems.Google Scholar
  39. Torge, W. (1980). Geodesy. Walter de Gruyter. Berlin-New York.Google Scholar
  40. Truesdell, C. (1966). The elements of continuum mechanics. Springer Vlg., New York etc.Google Scholar
  41. Vaníček, P. and Christou, N.T. (eds., 1994). Geoid and its geophysical interpretations. CRC Press, Inc., Boca Raton etc.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Petr Holota
    • 1
  1. 1.Research Institute of Geodesy, Topography and CartographyPraha-východCzech Republic

Personalised recommendations