Skip to main content

Retinoids and Embryos

  • Conference paper
Retinoids in Oncology

Part of the book series: ESO Monographs ((ESO MONOGRAPHS))

Abstract

The highly controlled manner of growth and change in embryos appears at first sight to be a world apart from the apparent disorder of cancer. However, the enormous variety of biological processes within a single embryo may offer some useful parallels with the molecular and cellular basis of oncogenesis. The control of retinoid levels within embryos, and the effects of altered retinoid levels on development, are particularly relevant in this respect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernfieid M, Banerjee SD, Koda J, Rapraeger AC: Remodeling of the basement membrane as a mechanism of morphogenetic tissue interaction. In: Trelstad RL, ed) The Role of Extracellular Matrix in Development. Alan R Liss, Inc, New York 1984 pp 545–572

    Google Scholar 

  2. Nakanishi Y, Morita T, Nogawa M: Cell proliferation is not required for the initiation of early cleft formation in mouse embryonic submandibular epithelium in vitro. Development 1987, (99):429–437

    PubMed  CAS  Google Scholar 

  3. Morriss-Kay GM: Growth and development of pattern in the cranial neural epithelium of rat embryos during neurulation. J Embryol Exp Morph 1981, 65 suppl :(225)–241

    PubMed  Google Scholar 

  4. Conlon RA and Rossant J: Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development 1992, (116) 357–368

    PubMed  CAS  Google Scholar 

  5. Langman J, Guerrant RL, Freemen BG: Behavior of neuroepithelial cells during closure of the neural tube. J Comp Neurol, (127):399–412

    Google Scholar 

  6. Morriss-Kay G and Mahmood R: Morphogenesis-related changes in extracellular matrix induced by retinoic acid. In: Morriss-Kay GM, (ed) Retinoids in Normal Development and Teratogenesis. Oxford University Press, Oxford 1992 pp 165–180

    Google Scholar 

  7. Tuckett F, Morriss-Kay GM: A role for heparan sulphate proteoglycan in the rat embryo: effects of heparitinase treatment during early organogenesis. Anat Embryol 1989, (180):393–400

    Article  PubMed  CAS  Google Scholar 

  8. Nüsslein-Volhard C and Wieschaus E: Mutations affecting segment number and polarity in Drosophila. Nature 1980, (287):795–801

    Article  PubMed  Google Scholar 

  9. Ingham PW: Localised hedgehog activity controls spatially restricted transcription of wingless Drosophila embryo. Nature 1993, (366) :560–562

    Article  PubMed  CAS  Google Scholar 

  10. Duboule D and Dolle P: The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 1989, (8):1497–1505

    PubMed  CAS  Google Scholar 

  11. Graham A, Papalopulu N, Krumlauf R: The murine and Drosophila homeobox clusters have common features of organisation and expression. Cell 1989, (57):367–378

    Article  PubMed  CAS  Google Scholar 

  12. Ingham P: Hedgehog points the way. Current Biology 1994, (4):347–350

    Article  PubMed  CAS  Google Scholar 

  13. Mangelsdorf DJ, Umesono K, Evans RM: The retinoid receptors. In: Sporn MB, Roberts AB, Goodman DS, eds) The Retinoids. Raven Press Ltd, New York 1994 pp 319–349

    Google Scholar 

  14. Dolle P, Ruberte E, Kastner P, Petkovich M, Stoner CM, Gudas LJ, Chambon P: Differential expression of the genes encoding the retinoic acid receptors α, ß, γand CRABP in the developing limbs of the mouse. Nature 1989, (342):702–705

    Article  PubMed  CAS  Google Scholar 

  15. Dolle P, Ruberte E, Leroy P, Morriss-Kay G, Chambon P: Retinoic acid receptors and cellular binding proteins I. A systematic study of their differential pattern of transcription during mouse organogenesis. Development 1990, (110):1133–1151

    PubMed  CAS  Google Scholar 

  16. Ruberte E, Dolle P, Chambon P, Morriss-Kay G: Retinoic acid receptors and cellular binding proteins II. Their differential pattern of transcription during early morphogenesis in mouse embryos. Development 1991, (111):45–60

    PubMed  CAS  Google Scholar 

  17. Ruberte E, Nakshatri H, Kastner P, Chambon P: Retinoic acid receptors and binding proteins in mouse limb development. In: GM Morriss-Kay, (ed) Retinoids in Normal Development and Teratogenesis. Oxford University Press, Oxford 1992 pp 99–111

    Google Scholar 

  18. Ruberte E, Friederich V, Morriss-Kay G, Chambon P: Differential distribution patterns of CRABP I and CRABP II transcripts during mouse embryogenesis. Development 1992, (115):973–987

    PubMed  CAS  Google Scholar 

  19. Ruberte E, Friederich V, Chambon P, Morriss-Kay G: Retinoic acid receptors and cellular retinoid binding proteins III. Their differential transcript distribution during mouse nervous system development. Development 1993, (118):267–282

    PubMed  CAS  Google Scholar 

  20. Mendelsohn C, Ruberte E, LeMeur M, Morriss-Kay G, Chambon P: Developmental analysis of the retinoic acid inducible RAR-62 promoter in transgenic animals. Development 1991, (113):723–734

    PubMed  CAS  Google Scholar 

  21. Ong D and Chytil F: Cellular retinoic acid binding protein from rat testis. J Biol Chem 1978, (253):4551–4554

    PubMed  CAS  Google Scholar 

  22. Bailey JS and Siu CH: Purification and partial characterization of a novel binding protein for retinoic acid from neonatal rat. J Biol Chem 1988, (263): 9326–9332

    PubMed  CAS  Google Scholar 

  23. Giguere V, Lyn S, Yip P, Siu CH, Amin S: Molecular cloning of cDNA encoding a second cellular retinoic acid-binding protein. Proc Natl Acad Sci USA 1990, (87):6233–6237

    Article  PubMed  CAS  Google Scholar 

  24. Napoli JL: Biosynthesis and metabolism of retinoic acid: roles of CRBP and CRABP in retinoic acid homeostasis. J Nutr 1993, (123):362–366

    PubMed  CAS  Google Scholar 

  25. Lufkin T, Mark M, Hart CP et al: High postnatal lethality and testis degeneration in retinoic acid receptor a mutant mice. Proc Natl Acad Sci USA 1993, (90):7225–7229

    Article  PubMed  CAS  Google Scholar 

  26. Lohnes D, Kastner p, Dierich A, Mark M, LeMeur M, Chambon P: Function of retinoic acid receptor y in the mouse. Cell 1993, (73):643–658

    Article  PubMed  CAS  Google Scholar 

  27. Mendelsohn C, Mark M, Dolé P et al: Retinoic acid receptor ß2, RARß2) null mutant mice appear normal. Developmental Biology 1994, (in press)

    Google Scholar 

  28. Fell HB and Mellanby E: The effect of hyper-vitaminosis A on embryonic limb-bones cultivated in vitro. J Physiol 1952, (116):320–349

    PubMed  CAS  Google Scholar 

  29. Shapiro SS and Mott DJ: Modulation of glycosaminoglycan biosynthesis by retinoids. Ann NY Acad Sci 1981, (359):306–321

    Article  PubMed  CAS  Google Scholar 

  30. Kistler A: Hypervitaminosis A: side-effects of retinoids. Biochem Soc Trans 1986, (14):936–939

    PubMed  CAS  Google Scholar 

  31. Creech Kraft J, Löfberg B, Chahoud I, Bochert G, Nau H: Teratogenicity and placental transfer of all-trans, 13-cis, 4-oxo-ali-trans, and 4-oxo-13-cis-retinoic acid after a low oral dose during organogenesis in mice. Toxicol Appl Pharmacol 1989, 100:162–176

    Article  PubMed  CAS  Google Scholar 

  32. Satre MA and Kochhar DM: Elevations in the endogenous levels of the putative morphogen retinoic acid in embryonic mouse limb buds associated with limb dysmorphogenesis. Devel Biol 1989, (133):529–536

    Article  CAS  Google Scholar 

  33. Ward SJ and Morriss-Kay GM: Distribution of all- trans-, 13-eis- and 9-cis-retinoic acid to whole rat embryos and maternal serum following oral administration of a teratogenic dose of all-frans-retinoic acid. Pharmacol Toxicol 1994, in press)

    Google Scholar 

  34. Wood H, Pall G, Morriss-Kay G: Exposure to retinoic acid before or after the onset of somitogenesis reveals separate effects on rhombomeric segmentation and 3’ HoxB gene expression domains. Development 1994, (120):2279–2285

    PubMed  CAS  Google Scholar 

  35. Ward S: The roles of retinoic acid in normal and abnormal mammalian limb development. Ph.D. thesis, University of Oxford, 1994

    Google Scholar 

  36. Mahmood R, Flanders KC, Morriss-Kay GM: Interactions between retinoids and TGF-ßs in mouse morphogenesis. Development 1992, (115):67–74

    PubMed  CAS  Google Scholar 

  37. Morriss-Kay GM: Retinoic acid and craniofacial development: molecules and morphogenesis. Bio-Essays 1993, (15):9–15

    CAS  Google Scholar 

  38. Lammer EJ, Chen DT, Hoar RM et al: Retinoic acid embryopathy. New Engl J Med 1985, (313):837–841

    Article  PubMed  CAS  Google Scholar 

  39. Kochhar DM: Limb development in mouse embryos. I. Analysis of teratogenic effects of retinoic acid. Teratology 1973, (11):289–298

    Article  Google Scholar 

  40. Kelley MW, Xu XM, Wagner MA, Warchol ME, Corwin JT: The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture. Development 1993, (119):1041–1053

    PubMed  CAS  Google Scholar 

  41. Shenai JP, Kennedy KA, Chytil F, Stahlman MT: Clinical trial of vitamin A supplementation in infants susceptible to bronchopulmonary dysplasia. J Pediatr 1987, (111):269–277

    Article  PubMed  CAS  Google Scholar 

  42. Wessels NK: Mammalian lung development: interactions in formation and morphogenesis of tracheal buds. J Exp Zool 1970, (175):455–466

    Article  Google Scholar 

  43. Cuschieri A and Bannister LH: The development of the olfactory mucosa in the mouse: light microscopy. J Anat 1975, (119):277–286

    PubMed  CAS  Google Scholar 

  44. Pall GS: The effects of excess retinoic acid on the expression of retinoid signalling pathway genes and morphogenesis in mouse embryos. M.Sc. thesis, University of Oxford, 1994

    Google Scholar 

  45. Cornic M, Delva L, Guidez F, Balitrand N, Degos L, Chomienne C: Induction of retinoic acid-binding protein in normal and malignant myeloid cells by retinoic acid in acute promyelocytic leukemia patients. Cancer Res 1992, (52):3329–3334

    PubMed  CAS  Google Scholar 

  46. Yang-Yen H-F, Zhang X-K, Graupner G, Tzukerman M, Sakamoto B, Karin M, Pfahl M: Antagonism between retinoic acid receptors and AP-1: Implications for tumor promotion and inflammation. New Biologist 1991, (3):1206–1220

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morriss-Kay, G. (1995). Retinoids and Embryos. In: Degos, L., Parkinson, D.R. (eds) Retinoids in Oncology. ESO Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79706-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79706-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79708-8

  • Online ISBN: 978-3-642-79706-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics