Advertisement

Parametrization of the effective potential in sodium clusters

  • B. A. Kotsos
  • M. E. Grypeos

Abstract

The effective radial electronic potentials for neutral sodium clusters determined by the local density approximation and the jellium model are parametrized by means of (symmetrized) Woods-Saxon and “Wine-Bottle” symmetrized Woods-Saxon potentials. The potential parameters are determined by various least-squares fitting procedures. Particular attention is paid to the dependence of the radius parameter R on the particle number N and it is realized that for relatively small values of N, complex expressions of R as a function of N, are more appropriate than the standard one R= r 0 N 1/3 It is also found that improved results in these cases are obtained with an expression, of the form R = r 0 N 1/3+b, which is still very simple.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    He Heer, A., Knight, W.D., Chou, M.Y., and Cohen, M.L.: in Solid State Phys., ed. by Ehrenreich, H., Seitz, F., and Turnbull, D., ( Acad., N.Y. 1987 ) Vol 40, p. 93Google Scholar
  2. 2.
    Nishioka, H., Hansen, K., and Mottelson, B.R.: Phys. Rev. B 42, 9377 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    Hohenberg. P., and Kohn, W.: Phys. Rev. B 136, 864 (1964)MathSciNetADSCrossRefGoogle Scholar
  4. Kohn, W., and Sham, L.J.: Phys. Rev. A 140, 1133 (1965)MathSciNetADSCrossRefGoogle Scholar
  5. Gummarson, O., and Lundgvist, B.I.: Phys. Rev. B 13, 4274 (1976)ADSCrossRefGoogle Scholar
  6. 4.
    Martins, J.L., Car, R., and Buttet, J.: Surf. Sci. 106, 265 (1981)ADSCrossRefGoogle Scholar
  7. 5.
    Snider, D.R., and Sorbello, R.S.: Solid State Communications 47, 385 (1983)CrossRefGoogle Scholar
  8. 6.
    Beck, D.E.: Solid State Commun. 49, 381 (1984)ADSCrossRefGoogle Scholar
  9. 7.
    Ekardt, W.: Phys. Rev. B 29, 1558 (1984)ADSCrossRefGoogle Scholar
  10. 8.
    Chou, M.Y., Cleland, A., and Cohen, M.L.: Solid State Commun. 52, 645 (1984)ADSCrossRefGoogle Scholar
  11. 9.
    Brack, M.: Phys. Rev. B 39, 3533 (1989)ADSCrossRefGoogle Scholar
  12. 10.
    Eldyshev, Yu V., Lukyanov, V.,and Pol, Yu S.: Soy. J. Nucl. Phys. 16, 282 (1973)Google Scholar
  13. Burov, V.V., Eldyshev, Yu V., Lukyanov, V.,and Pol, Yu S.: JINR preprint E4, 8029 Dubna (1974)Google Scholar
  14. 11.
    Lalazissis, G.A., Grypeos, M.E., and Massen, S.E.: J. Phys. G Nucl. Part. Phys. 15, 303 (1989)ADSCrossRefGoogle Scholar
  15. 12.
    Grypeos, M.E., Lalazissis, G.A., Massen, S.E., and Patios, C.P.: J. Phys. G Nucl. Part. Phys. 17, 1093 (1991)ADSCrossRefGoogle Scholar
  16. 13.
    Buck, B., and Pilt, A.: Nucl. Phys. A 280, 133 (1977)ADSCrossRefGoogle Scholar
  17. 14.
    Lange, T., Göhlich, H., Bergmann, T., and Martin, T.P.: Z. Phys. D, Atoms, Molecules and Clusters 19, 113 (1991); Lange, T.: Doctoral Thesis (Stuttgart, 1992 )Google Scholar
  18. 15.
    Yannouleas, C., and Broglia, R.A.: Europhysics Letters 15, 843 (1991)ADSCrossRefGoogle Scholar
  19. 15.
    Yannouleas, C., and Broglia, R.A.: Europhysics Letters 15, 843 (1991)ADSCrossRefGoogle Scholar
  20. 17.
    Anagnostatos, G.S.: Z. Phys. D, Atoms Molecules and Clusters 19, 121 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • B. A. Kotsos
    • 1
  • M. E. Grypeos
    • 1
  1. 1.Department of Theoretical PhysicsAristotle University of ThessalonikiGreece

Personalised recommendations