Neutron-rich nuclei studied with AMD

  • H. Horiuchi
  • Y. Kanada-En’yo
  • A. Ono


Antisymmetrized molecular dynamics (AMD) which is a newly constructed theory of quantum-mechanical microscopic simulation of heavy ion collisions is explained to present us with a very useful theoretical approach for the study of the structure-changes which occur when we go from ordinary nuclei to exotic neutron-rich nuclei. It is because of the flexible nature of the AMD wave function which can describe the formation and dissolution of clusters both in collision problems and in structure problems. After brief explanation of successful applications of AMD to heavy ion collisions and that of the frictional cooling technique for constructing minimum-energy wave functions, the results of the AMD analyses of Li, Be, and B isotopes are discussed. Very good reproduction of magnetic moments is obtained and is explained to be related with the structure-change between cluster structure and shell-model-like structure within each isotope. The superposition of AMD determinants is shown to reproduce neutron halo structure.


Wave Function Ground State Wave Function Intrinsic State Neutron Halo Microscopic Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Horiuchi, H.: Nucl. Phys. A522, 257c (1991)ADSGoogle Scholar
  2. 2.
    Horiuchi, H., Maruyama, T., Ohnishi, A, Yamaguchi, S.: Proc. Int. Conf. on Nuclear and Atomic Clusters, Turku (1991), Brenner, M., Lönroth, T., Malik, F.B. (eds.), p. 512. Berlin, Heidelberg, New York: Springer 1992Google Scholar
  3. Proc. Int. Symp. on Structure and reactions of Unstable Nuclei, Niigata (1991), Ikeda, K., Suzuki, Y. (eds.), p. 108. Singapore: World Scientific 1992Google Scholar
  4. 3.
    Ono, A., Horiuchi, H., Maruyama, T., Ohnishi, A.: Phys. Rev. Lett. 68, 2898 (1992)ADSCrossRefGoogle Scholar
  5. Ono, A., Horiuchi, H., Maruyama, T., Ohnishi, A.: Prog. Theor. Phys. 87, 1185 (1992)ADSCrossRefGoogle Scholar
  6. 4.
    Ono, A., Horiuchi, H., Maruyama, T., Ohnishi, A.: Phys. Rev. C47, 2652 (1993)ADSGoogle Scholar
  7. 5.
    Aichelin, J., Stöcker, H.: Phys. Lett. 176B, 14 (1986)ADSGoogle Scholar
  8. Peilert, G., Stöcker, H., Greiner, W., Rosenhauer, A., Bohnet, A., Aichelin, J.: Phys. Rev. C39, 1402 (1989)ADSGoogle Scholar
  9. Aichelin, J.: Phys. Rep. 202, 233 (1991)ADSCrossRefGoogle Scholar
  10. 6.
    Feldmeier, H.: Nucl. Phys. A515, 147 (1990)ADSGoogle Scholar
  11. 7.
    Saraceno, M., Kramer, F., Fernandez, F.: Nucl. Phys. A405, 88 (1983)ADSGoogle Scholar
  12. 8.
    Wilet, L., Henley, E.M., Kraft, M., MacKellar, A.D.: Nucl. Phys. A282, 341 (1977)ADSGoogle Scholar
  13. 9.
    Boal, D.H., Glosli, J.N.: Phys. Rev. C38, 1870 (1988)ADSGoogle Scholar
  14. 10.
    Brink, D.M.: Proc. Int. School of Phys. “Enrico Fermi”, p. 247, course 36 (1965), Bloch, C. (ed. )Google Scholar
  15. 11.
    Elliot, J.P.: Proc. Roy. Soc. (London) A245, 128–562 (1958)ADSGoogle Scholar
  16. 12.
    Horiuchi, H., Ono, A., Kanada, Y., Maruyama, T, Ohnishi, A.: Proc. First Joint Italian-Japanese Meeting within the INFNRIKEN Agreement on Perspectives in Heavy Ion Physics, Catania (1992), Di Toro, M., Migneco, E. (eds.), Italian Physical Society Conference Proceedings 38, 223 (1993)Google Scholar
  17. 13.
    Furutani, H. et al.: Prog. Theor. Phys. Supple. No. 68, Chap. III (1980)Google Scholar
  18. 14.
    Ando, T., Ikeda, K., Tohsaki, A.: Prog. Theor. Phys. 64, 1608 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • H. Horiuchi
    • 1
  • Y. Kanada-En’yo
    • 1
  • A. Ono
    • 1
  1. 1.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations