Advertisement

Mechanisms of Intracardiac Shunting in Reptiles: Pressure vs Washout Shunting

  • J. W. Hicks
  • G. M. Malvin
Part of the Advances in Comparative and Environmental Physiology book series (COMPARATIVE, volume 21)

Abstract

In adult mammals and birds, the right and left sides of the heart are normally separate. Intracardiac shunting, which is usually detrimental, results only from congenital abnormalities of the heart and great vessels. In contrast, intracardiac shunting normally occurs in noncrocodilian reptiles. The complex and unique anatomy of these animals can allow both the systemic venous blood to bypass the lungs as well as the pulmonary venous blood to bypass the systemic circulation. It is not uncommon for these bypasses to comprise most of the cardiac output. The success of this vertebrate class indicates that intracardiac shunting is not detrimental to these animals, and may, in fact, provide certain survival advantages (Burggren 1985).

Keywords

Aortic Arch Pulmonary Vascular Resistance Vagal Stimulation Pulmonary Blood Flow Systemic Arch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benenson W, Hitzig WM (1938) Diagnosis of venous arterial shunt by ether circulation time method. Proc Soc Exp Biol 38: 256–258CrossRefGoogle Scholar
  2. Bennett AF (1972) The effect of activity on oxygen consumption, oxygen debt, and heart rate in the lizards Varanus gouldiiand Souromalus hispidus. J Comp Physiol 79: 259–280CrossRefGoogle Scholar
  3. Benninghoff VA (1933) Herz. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere. Urban and Schwarzenberg, Berlin, pp 467–556, reprinted 1967 by A Asher and Co, AmsterdamGoogle Scholar
  4. Brücke E (1852) Beiträge zur vergleichenden Anatomie und Physiologie des Gefäßsystems. Denkschr Akad Wien 3: 335–367Google Scholar
  5. Burggren WW (1975) A quantitative analysis of ventilation tachycardia and its control in two chelonians, Pseudemys scriptaand Testudo graeca. J Exp Biol 63: 367–380PubMedGoogle Scholar
  6. Burggren WW (1977a) The pulmonary circulation of the chelonian reptile: morphology, pharmacology and hemodynamics. J Comp Physiol B 116: 303–324Google Scholar
  7. Burggren WW (1977b) Circulation during intermittent lung ventilation in the garter snake Thamnophis. Can J Zool 55: 1720–1725CrossRefGoogle Scholar
  8. Burggren WW (1985) Hemodynamics and regulation of central cardiovascular shunts in reptiles. In: Johansen K, Burggren WW (eds) Cardiovascular shunts: phylogenetic, ontogenetic and clinical aspects. Munksgaard, Copenhagen, pp 121–142Google Scholar
  9. Burggren WW, Johansen K (1982) Ventricular hemodynamics in the monitor lizard, Varanus exanthematicus: pulmonary and systemic pressure separation. J Exp Biol 96: 343–354Google Scholar
  10. Burggren WW, Shelton B (1979) Gas exchange and transport during intermittent breathing in chelonian reptiles. J Exp Biol 82: 75–92Google Scholar
  11. Burggren WW, Glass ML, Johansen K (1977) Pulmonary ventilation: perfusion relationships in terrestrial and aquatic chelonian reptiles. Can J Zool 55: 2024–2034PubMedCrossRefGoogle Scholar
  12. Clark LC, Bargeron LM, Lyons C, Bradley MN, McArthur KT (1960) Detection of right-to-left shunts with an arterial potentiometric electrode. Circulation 22: 949–955PubMedCrossRefGoogle Scholar
  13. Comeau S (1992) Vagal regulation of central vascular blood flow in the turtle, Pseudemys scripta. MS Thesis, Creighton University, Omaha, NEGoogle Scholar
  14. Comeau SG, Hicks JW (1994) Regulation of central vascular blood flow in the turtle. Am J Physiol 267: R569 - R578PubMedGoogle Scholar
  15. Foxon GEH (1951) A radiographic study of the passage of the blood through the heart in the frog and toad. Proc Zool Soc Lond 121: 529–538CrossRefGoogle Scholar
  16. Foxon GEH, Walls EW (1947) The radiographic demonstration of the mode of action of the heart of the frog. J Anat Lond 81: 111–117Google Scholar
  17. Goodrich ES (1916) On the classification of the Reptilia. Proc R Soc B 89: 261–276CrossRefGoogle Scholar
  18. Goodrich ES (1919) Note on the reptilian heart. J Anat Lond 53: 298–304Google Scholar
  19. Goodrich ES (1919) Note on the reptilian heart. J Anat Lond 53: 298–304Google Scholar
  20. Griel A (1903) Beiträge zur vergleichenden Anatomie and Entwicklungsgeschichte des Herzens and des Truncus arteriosis der Wirbelthiere. Morphol Jahrb 31: 123–310Google Scholar
  21. Grossman W (1986) Shunt detection and measurement. In: Grossman W (ed) Cardiac catheterization and angiography. Lea and Febiger, Philadelphia, pp 155–169Google Scholar
  22. Heisler N, Glass ML (1985) Mechanisms and regulation of central vascular shunts in reptiles. In: Johansen K, Burggren WW (eds) Cardiovascular shunts: phylogenetic, ontogenetic and chinical aspects. Munksgaard, Copenhagen, pp 334–353Google Scholar
  23. Heisler N, Neumann P, Maloiy GMO (1983) The mechanism of intracardiac shunting in the lizard Varanus exanthematicus. J Exp Biol 105: 15–31PubMedGoogle Scholar
  24. Hicks JW (1993) Regulation of intracardiac shunting in reptiles: anatomic vs effective shunting. In: Bicudo JE, Glass ML (eds) The vertebrate gas transport cascade: adaptations to environment and mode of life. CRC Press, Boca Raton, pp 252–265Google Scholar
  25. Hicks JW, Comeau SG (1994) Vagal regulation of intracardiac shunting in the turtle, Pseudemys scripta. J Exp Biol 186: 109–126PubMedGoogle Scholar
  26. Hicks JW, Malvin GM (1992) Mechanism of intracardiac shunting in Pseudemys scripta. Am J Physiol 262: R986 - R992PubMedGoogle Scholar
  27. Hicks JW, Wood SC (1988) Oxygen homeostasis in lower vertebrates: The impact of external and internal hypozia. In: Wood SC (ed) Lung Biology in Health and Disease Comparative Pulmonary Physiology: Current Concepts. Dekker, New York, pp 311–341Google Scholar
  28. Ishimatsu A, Hicks JW, Heisler N (1988) Analysis of intracardiac shunting in the lizard, Varanus niloticus: a new model based on blood oxygen levels and microsphere distribution. Respir Physiol 71: 83–100PubMedCrossRefGoogle Scholar
  29. Johansen K (1959) Circulation in the three-chambered snake heart. Circ Res 7: 828–832PubMedCrossRefGoogle Scholar
  30. Johansen K (1963) Cardiovascular dynamics in the amphibian, Amphiuma tridactylum. Acta Physiol Scand 60: 1–82Google Scholar
  31. Johansen K, Burggren WW (1980) Cardiovascular function in lower vertebrates. In: Bourne G (ed) Hearts and heart-like organs, vol I. Academic Press, New York, pp 61–117Google Scholar
  32. Johansen K, Abe A, Andresen JH (1987) Intracardiac shunting revealed by angiocardiography in the lizard Tupinambis teguixin. J Exp Biol 130: 1–12Google Scholar
  33. Khalil F, Zaki K (1964) Distribution of blood in the ventricle and aortic arches in Reptilia. Z Vgl Physiol 48: 663–689CrossRefGoogle Scholar
  34. Levy AM, Monroe RG, Hugenholtz PG, Nada AS (1967) Clinical use of ascorbic acid as an indicator of right-to-left shunt. Br Heart J 29: 22–29PubMedCrossRefPubMedCentralGoogle Scholar
  35. Lillywhite HB, Donald JA (1989) Pulmonary blood flow regulation in an aquatic snake. Science 245: 293–295PubMedCrossRefGoogle Scholar
  36. Long RTL, Braunwald E, Morrow AG (1960) Intracardiac injection of radioactive krypton: clinical applications of new methods for characterization of circulatory shunts. Circulation 21: 1126–1133PubMedCrossRefGoogle Scholar
  37. Mathur PN (1946) The anatomy of the reptilian heart. Part II. Serpentes, Testudinata and Loricata. Proc Indian Acad Sci 20: 1–29Google Scholar
  38. Millard RW, Johansen K (1973) Ventricular outflow dynamics in the lizard, Varanus niloticus: responses to hypoxia, hypercarbia and diving. J Exp Biol 60: 871–880Google Scholar
  39. Millen JE, Murdaugh HV, Bauer CB, Robin D (1964) Circulatory adaptation to diving in the freshwater turtle. Science 145: 591–593PubMedCrossRefGoogle Scholar
  40. Milsom WK, Langille BL, Jones DR (1977) Vagal control of pulmonary vascular resistance in the turtle, Chrysemys scripta. Can J Zool 55: 359–367PubMedCrossRefGoogle Scholar
  41. Morrow AG, Sanders RJ, Braunwald E (1958) The nitrous oxide test: an improved method for the detection of left-to right shunts. Circulation 17: 284–291PubMedCrossRefGoogle Scholar
  42. O’Donoghue CH (1918) The heart of the leathery turtle, Dermochelys (Sphargis) coriacea. With a note on the septum ventriculorum in the Reptilia. J Anat Lond 52: 823–890Google Scholar
  43. Rau AS (1924) Observations of the anatomy of the heart of Tiliqua scincoidesand Eunectes murinus. J Anat Lond 59: 60–71Google Scholar
  44. Rudolf AM (1974) Congenital diseases of the heart: clinical-physiologic considerations in diagnosis and management. Year Book Medical Publishers Inc, ChicagoGoogle Scholar
  45. Shelton G, Burggren WW (1976) Cardiovascular dynamics of the Chelonia during apnea and lung ventilation. J Exp Biol 64: 323–343PubMedGoogle Scholar
  46. Shelton G, Jones DR, Milsom WK (1986) Control of breathing in ectothermic vertebrates. In: Fishman E (ed) Handbook of physiology, section 3: the respiratory system, vol II. Control of breathing, part 2. Am Physiol Soc, Bethesda, pp 857–909Google Scholar
  47. Steggerda FR, Essex HE (1957) Circulation and blood pressure in the great vessels and heart of the turtle Chelydra serpentina. Am J Physiol 190: 320–326PubMedGoogle Scholar
  48. Swan HJC, Zapata-Diaz J, Wood EH (1953) Dye dilution curves in cyanotic congenital heart disease. Circulation 8: 70–76PubMedCrossRefGoogle Scholar
  49. Van Mierop LHS, Kutsche LM (1981) Comparative anatomy of the ventricular septum. In: Wenink ACG (ed) The ventricular septum of the heart, Nijhoff, The Hague, pp 35–46CrossRefGoogle Scholar
  50. Van Mierop LHS, Kutsche LM (1985) Some aspects of comparative anatomy of the heart. In: Johansen K, Burggren WW (eds) Cardiovascular shunts: phylogenetic, ontogenetic and clinical aspects. Munksgaard, Copenhagen, pp 38–56Google Scholar
  51. Webb GJ, Heatwolfe H, de Bavay J (1974) Comparative cardiac anatomy of the Reptilia. II. A critique of the literature on the Squamata and Rhynchocephalia. J Morphoe 142: 1–20CrossRefGoogle Scholar
  52. White FN (1959) Circulation in the reptilian heart (Squamata). Anat Rec 135: 129–134PubMedCrossRefGoogle Scholar
  53. White FN (1968) Functional anatomy of the heart of reptiles. Am Zool 8: 211–219PubMedGoogle Scholar
  54. White FN (1978) Circulation: a comparison of reptiles, mammals and birds. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin Heidelberg New York, pp 51–60CrossRefGoogle Scholar
  55. White FN (1985) Role of intracardiac shunts in pulmonary gas exchange in chelonian reptiles. In: Johansen K, Burggren WW (eds) Cardiovascular shunts: phylogenetic, ontogenetic and clinical aspects. Munksgaard, Copenhagen, pp 296–309Google Scholar
  56. White FN, Ross G (1966) Circulatory changes during experimental diving in the turtle. Am J Physiol 211: 15–18PubMedGoogle Scholar
  57. White FN, Hicks JW, Ishimatsu A (1989) Respiratory states and intracardiac shunts in turtles. Am J Physiol 256: R240 - R247PubMedGoogle Scholar
  58. Wood SC, Hicks JW (1985) Oxygen homeostasis in vertebrates with cardiovascular shunts. In: Johansen K, Burggren WW (eds) Cardiovascular shunts: phylogenetic, ontogenetic and clinical aspects. Munksgaard, Copenhagen, pp 354–362Google Scholar
  59. Wood SC, Johansen K, Gatz RN (1977) Pulmonary blood flow, ventilation/perfusion ratio, and oxygen transport in a varanid lizard. Am J Physiol 233: R89 - R93PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • J. W. Hicks
    • 1
  • G. M. Malvin
    • 2
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineUSA
  2. 2.Oxygen Transport ProgramLovelace Medical FoundationAlbuquerqueUSA

Personalised recommendations