Skip to main content

Physiological Roles of the Secondary Circulatory System in Fish

  • Chapter
Mechanisms of Systemic Regulation

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 21))

Abstract

Most studies of the secondary circulation or the “secondary vascular system” (Vogel 1981; Vogel and Claviez 1981) have concentrated on descriptions of morphology, rather than function, among various species (see Steffensen and Lomholt 1992). The scarce available evidence at this time characterizes the secondary vascular system in fishes as being a pool of blood which is low in pressure, low in red cell content, absent from the muscle tissues, associated with both the inner and outer surfaces of body including the gills, and of a volume that approaches or exceeds that of the primary circulation. Vogel (1985a) demonstrated the occurrence of an extremely dense capillary network of the secondary system over the scales of trout and tilapia. Satchell (1991) pointed out that similar vascularization on the scales had been observed for both freshwater and seawater teleosts in old anatomical literatures (Jakubowski 1960a,b, 1989; Kaczmarski 1966; Tyszkiewicz 1969), while it is not always clear whether such capillary networks belong to either the primary or secondary vascular system. A similar subepithelial vascular network has also been observed in the Atlantic hagfish Myxine glutinosa (Lametschwandtner et al. 1989). Vogel (1985a) also stated that secondary capillary networks are distributed in the mucous membrane of the mouth and the peritoneum, and possibly in the intestinal wall. The central venous sinus (CVS) which is located within the primary lamella of the gill is currently considered to be part of the secondary vascular system (Vogel 1985a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avella M, Bornancin M (1989) A new analysis of ammonia and sodium transport through the gills of the freshwater rainbow trout (Salmo gairdneri). J Exp Biol 142: 155–175

    Google Scholar 

  • Bailly Y, Dunel-Erb S (1986) The sphincter of the efferent filament artery in teleost gills: I. Structure and parasymphathetic innervation. J Morphol 187: 219–237

    Article  Google Scholar 

  • Bailly Y, Dunel-Erb S, Geffard M, Laurent P (1989) The vascular and epithelial serotonergic innervation of the actinopterygian gill filament with special reference to the trout, Salmo gairdneri. Cell Tissue Res 258: 349–363

    Article  Google Scholar 

  • Boland EJ, Olson KR (1979) Vascular organization of the catfish gill filament. Cell Tissue Res 198: 487–500

    Article  PubMed  CAS  Google Scholar 

  • Cameron JN, Iwama GK (1987) Compensation of progressive hypercapnia in channel catfish and blue crabs. J Exp Biol 133: 183–197

    Google Scholar 

  • Chan DKO (1971) The urophysis and the caudal circulation of teleost fish. Mem Soc Endocrinol 19: 391–412

    Google Scholar 

  • Chan DKO (1975) Cardiovascular and renal effects of urotensin I and II in the eel, Angailla rostrata. Gen Comp Physiol 27: 52–61

    CAS  Google Scholar 

  • Claiborne JB, Evans DH (1980) The isolated, perfused head of the marine teleost fish, Myoxocephalus octodecimspinosus: hemodynamic effects of epinephrine. J Comp Physiol 138: 79–85

    Google Scholar 

  • Davie PS (1981) Neuroanatomy and control of the caudal lymphatic heart of the short-finnedeel (Anguilla australis schmidtii). Can J Zool 59: 1586–1592

    Article  Google Scholar 

  • Dewar H, Brill RW, Olson KR (1994) Secondary circulation of the vascular heat exchangers in skipjack tuna, Katsuwonus pelamis. J Exp Zool 269: 566–570

    Article  Google Scholar 

  • Dunel-Erb S, Bailly Y (1986) The sphincter of the efferent filament artery in teleost gills: II. Sympathetic innervation. J Morphol 187: 239–246

    Article  Google Scholar 

  • Dunel-Erb S, Bailly Y, Laurent P (1989) Neurons controlling the gill vasculature in five species of teleosts. Cell Tissue Res 255: 567–573

    Article  Google Scholar 

  • Ellis AE, de Sousa M (1974) Phylogeny of the lymphoid system. I. A study of the fate of circulating lymphocytes in plaice. Eur J Immunol 4: 338–343

    CAS  Google Scholar 

  • Farrell AP, Smith DG (1981) Microvascular pressures in gill filaments of lingcod (Ophiodon elongatus). J Exp Zool 216: 341–344

    Article  Google Scholar 

  • Foskett JK, Machen TE (1985) Vibrating probe analysis of teleost opercular epithelium: correlation between active transport and leak pathways of individual chloride cells. J Membr Biol 85: 25–35

    Article  PubMed  CAS  Google Scholar 

  • Foskett JK, Scheffey C (1982) The chloride cell: definitive identification as the salt-secretory cell in teleosts. Science 215: 164–166

    Article  PubMed  CAS  Google Scholar 

  • Fromm PO (1968) Some quantitative aspects of ion regulation in teleosts. Comp Biochem Physiol 27: 865–869

    Article  CAS  Google Scholar 

  • Gardaire E, Avella M, Isaia J, Bornancin M (1991) Measurement of branchial vascular space of trout, Oncorhynchus my kiss: effects of adrenaline. J Comp Physiol 161B: 265–269

    CAS  Google Scholar 

  • Girard JP, Payan P (1976) Effect of epinephrine on vascular space of gills and head of rainbow trout. Am J Physiol 230: 1555–1560

    PubMed  CAS  Google Scholar 

  • Goss GG, Laurent P, Perry SF (1992a) Evidence for a morphological component in acid-base regulation during environmental hypercapnia in the brown bullhead (Ictalurus nebulosns). Cell Tissue Res 268: 539–552

    Article  PubMed  CAS  Google Scholar 

  • Goss GG, Perry SF, Wood CM, Laurent P (1992b) Mechanism of ion and acid-base regulation at the gills of freshwater fish. J Exp Zool 263: 143–159

    Article  PubMed  CAS  Google Scholar 

  • Hargens AR, Millard RW, Johansen K (1974) High capillary permeability in fishes. Comp Biochem Physiol 48A: 675–680

    Article  CAS  Google Scholar 

  • Heisler N (1993) Acid-base regulation. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, pp 343–378

    Google Scholar 

  • Henrikson RC, Matoltsy AG (1968) The fine structure of teleost epidermis. III. Club cells and other cell types. J Ultrastruct Res 21: 222–232

    Article  Google Scholar 

  • Hipkins SF (1985) Adrenergic responses of the cardiovascular system of the eel, Anguilla australis, in vivo. J Exp Zool 235: 7–20

    Article  PubMed  CAS  Google Scholar 

  • Hwang PP (1989) Distribution of chloride cells in teleost larvae. J Morphol 200: 1–8

    Article  Google Scholar 

  • Ishihara A, Mugiya Y (1987) Ultrastructural evidence of calcium uptake by chloride cells in the gills of goldfish, Carassius auratus. J Exp Zool 242: 121–129

    Article  CAS  Google Scholar 

  • Ishimatsu A, Iwama GK, Heisler N (1988) In vivo analysis of partitioning of cardiac output between systemic and CVS circuits in rainbow trout: a new approach using chronic cannulation of the branchial vein. J Exp Biol 137: 75–88

    PubMed  CAS  Google Scholar 

  • Ishimatsu A, Iwama GK, Bentley TB, Heisler N (1992) Contribution of the secondary circulatory system to acid-base regulation during hypercapnia in rainbow trout (Oncorhynchus mykiss). J Exp Biol 170: 43–56

    Google Scholar 

  • Iwama GK, Ishimatsu A, Heisler N (1993) Site of acid-base relevant ion transfer in the gills of rainbow trout (Oncorhynchus mykiss) exposed to environmental hypercapnia. Fish Physiol Biochem 12: 269–280

    Article  CAS  Google Scholar 

  • Jakubowski M (1960a) The structure and vascularization of the skin of the eel (Anguilla anguilla L.) and the viviparous blenny (Zoarces viviparous L.). Acta Biol Crac Zool 3: 1–22

    Google Scholar 

  • Jakubowski M (1960b) The structure and vascularization of the skin of the leathern carp (Cyprinus carpio L. var. nuda) and flounder (Pleuronectes flesus luscus Pall.). Acta Biol Crac Zool 3: 139–162

    Google Scholar 

  • Jakubowski M (1989) Skin vascularization in fishes compared with that in amphibians. In: Splechtna H, Hilgers H (eds) Trends in vertebrate morphology. Gustav Fischer, Stuttgart, pp 542–545

    Google Scholar 

  • Kaczmarski F (1966) Structure and vascularization of the skin of the ruff (Acerina cernua L.). Acta Biol Crac Zool 9: 165–175

    Google Scholar 

  • Kampmeier OF (1969) Evolution and comparative morphology of the lymphatic system. Thomas, Springfield

    Google Scholar 

  • Kiceniuk JW, Jones DR (1977) The oxygen transport system in trout (Salino gairdneri) during sustained exercise. J Exp Biol 69: 247–260

    Google Scholar 

  • Lametschwandtner A, Weiger T, Lametschwandtner U, Georgieva-Hanson V, Patzner RA, Adam H (1989) The vascularization of the skin of the Atlantic hagfish, Myxine glutinosa L. as revealed by scanning electron microscopy of vascular corrosion casts. Scanning Microsc 3: 305–314

    Google Scholar 

  • Laurent P (1984) Gill internal morphology. In: Hoar WS, Randall DJ (eds) Fish physiology, vol XA. Academic Press, New York, pp 73–183

    Google Scholar 

  • Laurent P (1989) Gill structure and function: fish. In: Wood SC (ed) Comparative pulmonary physiology: current concepts. Lung biology in health and disease, vol 39. Dekker, New York, pp 69–120

    Google Scholar 

  • Laurent P, Perry SF (1990) Effects of cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout, Salmo gairdneri. Cell Tissue Res 259: 429–442

    Article  CAS  Google Scholar 

  • Laurent P, Perry SF (1991) Environmental effects on fish gill morphology. Physiol Zool 64: 4–25

    Google Scholar 

  • Leino RL, McCormick JH (1984) Morphological and morphometrical changes in chloride cells of the gills of Pimephales promelas after chronic exposure to acid water. Cell Tissue Res 236: 121–128

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Randall DJ (1991) Evidence for the presence of an electrogenic proton pump on the trout gill epithelium. J Exp Biol 161: 119–134

    Google Scholar 

  • Lin H, Randall DJ (1993) H+-ATPase activity in crude homogenates of fish gill tissue: inhibitor sensitivity and environmental and hormonal regulation. J Exp Biol 180: 163–174

    CAS  Google Scholar 

  • Lin H, Pfeiffer DC, Vogl AW, Pan J, Randall DJ (1994) Immunolocalization of H+-ATPase in the gill epithelia of rainbow trout. J Exp Biol 195: 169–183

    PubMed  CAS  Google Scholar 

  • Marshall WS (1985) Paracellular ion transport in trout opercular epithelium models osmoregulatory effects of acid precipitation. Can J Zool 63: 1816–1822

    Article  CAS  Google Scholar 

  • Marshall WS, Bryson SE, Wood CM (1992) Calcium transport by isolated skin of rainbow trout. J Exp Biol 166: 297–316

    PubMed  CAS  Google Scholar 

  • McDonald DG, Prior ET (1988) Branchial mechanisms of ion and acid-base regulation in the freshwater rainbow trout, Salmo gairdneri. Can J Zool 66: 2699–2708

    Article  CAS  Google Scholar 

  • Nekvasil NP, Olson KR (1985) Localization of 3H-norepinephrine binding sites in the trout gill. J Exp Zool 235: 309–313

    Article  CAS  Google Scholar 

  • Nilsson S (1983) Autonomic nerve function in the vertebrates. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nilsson S (1984) Innervation and pharmacology of the gills. In: Hoar WS, Randall DJ (eds) Fish physiology, vol XA. Academic Press, New York, pp 185–227

    Google Scholar 

  • Nilsson S, Pettersson K (1981) Sympathetic nervous control of blood flow in the gills of the Atlantic cod, Gadus morhua. J Comp Physiol 144B: 157–163

    CAS  Google Scholar 

  • Nonnotte G, Nonnotte L, Kirsch R (1979) Chloride cells and chloride exchange in the skin of a sea-water teleost, the shanny (Blennius pholis L.). Cell Tissue Res 199: 387–396

    Article  PubMed  CAS  Google Scholar 

  • Olson KR (1984) Distribution of flow and plasma skimming in isolated perfused gills of three teleosts. J Exp Biol 109: 97–108

    Google Scholar 

  • Olson KR, Meisheri KD (1989) Effects of atrial natriuretic factor on isolated arteries and perfused organs of trout. Am J Physiol 256: R10 - R18

    PubMed  CAS  Google Scholar 

  • Olson KR, Kullman D, Narkates AJ, Oparil S (1986) Angiotensin extraction by trout tissues in vivo and metabolism by the perfused gill. Am J Physiol 250: R532 - R538

    PubMed  CAS  Google Scholar 

  • Olson KR, Duff DW, Farrell AP, Keen J, Kellogg MD, Kullman D, Villa J (1991) Cardiovascular effects of endothelin in trout. Am J Physiol 260: H1214 - H1223

    PubMed  CAS  Google Scholar 

  • Payan P, Girard JP (1977) Adrenergic receptors regulating patterns of blood flow through the gills of trout. Am J Physiol 232: H18 - H23

    PubMed  CAS  Google Scholar 

  • Payan P, Girard JP, Mayer-Gostan N (1984) Branchial ion movements in teleosts: the roles of respiratory and chloride cells. In: Hoar WS, Randall DJ (eds) Fish physiology, vol XB. Academic Press, New York, pp 39–63

    Google Scholar 

  • Perry SF, Goss GG (1994) The effects of experimentally altered gill chloride cell surface area on acid-base regulation in rainbow trout during metabolic alkalosis. J Comp Physiol 164B: 327–336

    CAS  Google Scholar 

  • Perry SF, Davie PS, Daxboeck C, Ellis AG, Smith DG (1984) Perfusion methods for the study of gill physiology. In: Hoar WS, Randall DJ (eds) Fish physiology, vol XB. Academic Press, New York, pp 325–388

    Google Scholar 

  • Pfeiler E, Lindley V (1989) Chloride-type cells in the skin of the metamorphosing bonefish (Albula sp.) leptocephalus. J Exp Zool 250: 11–16

    Article  Google Scholar 

  • Randall DJ (1985) Shunts in fish gills. In: Johansen K, Burggren WW (eds) Cardiovascular shunts: phylogenetic, ontogenetic and clinical aspects. Munksgaard, Copenhagen, pp 71–87

    Google Scholar 

  • Satchell GH (1991) Physiology and form of fish circulation. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Shephard KL (1992) Studies on the fish gill microclimate. J Comp Physiol 162B: 231–240

    CAS  Google Scholar 

  • Shuttleworth TJ (1989) Overview of epithelial ion-transport mechanisms. Can J Zool 67: 3032–3038

    Article  CAS  Google Scholar 

  • Smith DG (1977) Sites of cholinergic vasoconstriction in trout gills. Am J Physiol 233 R222 - R229

    PubMed  CAS  Google Scholar 

  • Stagg RM, Shuttleworth TJ (1984) Hemodynamics and potentials in isolated flounder gills: effects of catecholamines. Am J Physiol 246: R211 - R220

    PubMed  CAS  Google Scholar 

  • Steffensen JF, Lomholt JP (1992) The secondary vascular system. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology, vol XII. Academic Press, London, pp 185–217

    Google Scholar 

  • Steffensen JF, Lomholt JP, Vogel WOP (1986) In vivo observations on a specialized microvas-culature, the primary and secondary vessels in fishes. Acta Zool (Stockh) 67: 193–200

    Article  Google Scholar 

  • Stuffier DF, Graham JB, Dickson KA, Stockmann W (1986) Cutaneous ion transport in the freshwater teleost Synbranchus marmoratus. Physiol Zool 59: 406–418

    Google Scholar 

  • Sundin L, Nilsson S, (1992) Arterio-venous branchial blood flow in the Atlantic cod Gadus morhua. J Exp Biol 165: 73–84

    CAS  Google Scholar 

  • Tang Y, Boutilier RG (1988) Correlation between catecholamine release and degree of acidotic stress in trout. Am J Physiol 255: R395 - R399

    PubMed  CAS  Google Scholar 

  • Tyszkiewicz K (1969) Structure and vascularization of the skin of the pike (Esox lucius L.). Acta Biol Crac Zool 12: 67–79

    Google Scholar 

  • Vogel WOP (1978) Arteriovenous anastomoses in the afferent region of trout gill filaments (Salmo gairdneri Richardson, Teleostei). Zoomorphologie 90: 205–212

    Article  Google Scholar 

  • Vogel WOP (1981) Struktur and Organisationsprinzip im Gefäßsystem der Knochenfische. Gegenbaurs Morphol Jahrb 127: 772–784

    PubMed  CAS  Google Scholar 

  • Vogel WOP (1985a) Systemic vascular anastomoses, primary and secondary vessels in fish, and the phylogeny of lymphatics. In: Johansen K, Burggren WW (eds) Cardiovascular shunts: phylogenetic, ontogenetic and clinical aspects. Munksgaard, Copenhagen, pp 143–159

    Google Scholar 

  • Vogel WOP (1985b) The caudal heart of fish: not a lymph heart. Acta Anat 121: 41–45

    Article  PubMed  CAS  Google Scholar 

  • Vogel WOP, Claviez M (1981) Vascular specialization in fish, but no evidence for lymphatics. Z Naturforsch 36C: 490–492

    Google Scholar 

  • Vogel WOP, Vogel V, Kremers H (1973) New aspects of the intrafilamental vascular system in gills of a euryhaline teleost, Tilapia mossambica. Z Zellforsch 144: 573–583

    Article  PubMed  CAS  Google Scholar 

  • Whitear M (1986) The skin of fishes including cyclostomes. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument 2. Vertebrates. Springer, Berlin Heidelberg New York, pp 8–64

    Google Scholar 

  • Whitear M, Mittal AK (1986) Structure of the skin of Agonus cataphractus ( Teleostei ). J Zool Lond 210A: 551–574

    Article  Google Scholar 

  • Zadunaisky JA (1984) The chloride cell: the active transport of chloride and the paracellular pathways. In: Hoar WS, Randall DJ (eds) Fish physiology, vol XB. Academic Press, New York, pp 129–176

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ishimatsu, A., Iwama, G.K., Heisler, N. (1995). Physiological Roles of the Secondary Circulatory System in Fish. In: Heisler, N. (eds) Mechanisms of Systemic Regulation. Advances in Comparative and Environmental Physiology, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79666-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79666-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79668-5

  • Online ISBN: 978-3-642-79666-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics